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a b s t r a c t 

Script identification plays a significant role in analysing documents and videos. In this paper, we focus 

on the problem of script identification in scene text images and video scripts. Because of low image 

quality, complex background and similar layout of characters shared by some scripts like Greek, Latin, 

etc., text recognition in those cases become challenging. In this paper, we propose a novel method that 

involves extraction of local and global features using CNN-LSTM framework and weighting them dynam- 

ically for script identification. First, we convert the images into patches and feed them into a CNN-LSTM 

framework. Attention-based patch weights are calculated applying softmax layer after LSTM. Next, we do 

patch-wise multiplication of these weights with corresponding CNN to yield local features. Global fea- 

tures are also extracted from last cell state of LSTM. We employ a fusion technique which dynamically 

weights the local and global features for an individual patch. Experiments have been done in four public 

script identification datasets: SIW-13, CVSI2015, ICDAR-17 and MLe2e. The proposed framework achieves 

superior results in comparison to conventional methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Script identification is one of the essential elements of Op-

tical Character Recognition (OCR). Provided an input text image,

the function of script identification is to classify it into one of

the available scripts which include English, Chinese, Greek, Arabic

etc. Some examples of scene text images from various scripts are

shown in Fig. 1 . Script identification task can be posed as an image

classification problem that has been thoroughly studied recently.

It is potentially applied for different purposes such as scene un-

derstanding [1] , image searching of any product [2] , mobile phone

navigation, video caption recognition [3] , and machine translation

[4,5] . 

In the field of document image analysis problems, script identi-

fication has gained plenty of popularity in recent years. The main

area of research lies in script identification of printed documents

or videos. Spitz in [6] exploits different spatial relationships of

features connected to concave shapes in character structures, for
∗ Corresponding author. 
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age-wise script identification. In [7] the authors addressed text

evel script identification of Indian language using projection pro-

le. Hochberg et al. [8] developed a novel method utilizing tem-

lates based on clusters to deal with distinct characteristic layouts.

an in [9] employed texture level features unaffected by rotation,

or identification of Chinese, English, Greek, Russian and other such

ext. In [10] , Singh et al. make use of mid-level feature represen-

ation extracted from densely calculated local features and in end

 readymade classifier for script identification from text image. All

he above methods have achieved great results but only in docu-

ent script identification. 

However, identification of script from natural scenes is still a

hought-provoking problem and has not been dealt with much. As

exts in natural scenes often hold productive, high quality informa-

ion, many works are found in localization and recognition of scene

ext [11–17] . Script identification in the wild is an unavoidable

re-processing of a multi-lingual scene text understanding scheme

18–20] . But this scene text identification is difficult because its

haracteristics are quite dissimilar to normal image classification,

r document/video script identification, largely owing to the fol-

owing reasons: Firstly, in natural scenes, text presents more diver-

ity compared to documents or videos. They are frequently spotted

https://doi.org/10.1016/j.patcog.2018.07.034
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Fig. 1. Examples of scene text images. 
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i  
n complex backgrounds such as outdoor sign-boards and hoard-

ngs, written in different fonts and styles. Fonts and colour of the

ext have large variations. Secondly, the image quality is often de-

raded by distortions such as low resolutions, noises, and varying

ight conditions. This results in low accuracy. Traditional document

nalysing methods like binarization and component analysis ap-

ear untrustworthy. And finally, few languages contain relatively

mall dissimilarities, e.g., scripts like Greek, English and Russian

hare a subset of characters that have nearly the same layout. Dif-

erentiating them depends largely on peculiar characters or dealing

ith components. This is cast as a problem of fine-grained classi-

cation. 

While substantial research works can be found for text script

dentification in complex backgrounds [21–23] , such methods are

o far limited and have their own challenges. Pre-defined image

lassification algorithms, such as the robustly tested CNN [24] and

he Single-Layer Networks (SLN) [25] normally consider holistic

epresentation of images. Hence they perform poorly in distin-

uishing some script categories (e.g., English and Greek). The use

f state of the art CNN classifiers for script identification is not

traightforward, as they fail to counter the primary characteristic

f extremely variable aspect ratio. Gomez et al. [26] describe a

ew method using ensembles of conjoined networks as they form

n important factor in a patch-based classification system. In [27] ,

he authors proposed a novel approach, where Convolutional Neu-

al Network (CNN) and Recurrent Neural Network (RNN) have been

ombined into an end-to-end framework. 

Earlier, attention mechanism has never been employed in script

dentification problem. However, in recent years, attention model

as been proved to be effective and impactful in the field of com-

uter vision [59,49,60] and natural language processing [61] . But

n the script identification task, few scripts are present which have

imilar character layouts. To distinguish them, attention in some

pecific areas is necessary. In this paper we introduce a novel feed

orward attention mechanism for improving script identification.

ttention improves the ability of the network to extract the most

elevant information for each part of an input image. Thus it can

lso efficiently select those features which hold more significance

t a particular step. To the best of our knowledge, ours is the first

ork to exploit attention mechanism for script identification task. 

We used deep CNN architectures on image patches to extract

heir feature representations and eventually fed them to a LSTM

etwork. After this, we used attention mechanism for weight cal-

ulation of patches in order to give importance to those features

hich hold more significance. The patch-wise multiplication of

hese attention weights with the extracted CNN feature vectors

ields the local features for individual patches whereas a global

eature is obtained from the last cell state of LSTM. Local features

ontain fine-grained information while the global feature captures

he holistic representation of the text images. Lastly we integrated

p  
ocal and global features using dynamic weighting because fusion

f these features has been proved to give superior performance in

arious works [62] . In our work we employed attention based dy-

amic weighting to efficiently decide whom to assign more weigh-

age between global feature and local feature, depending on their

rominence. A fully connected layer is used at the end to obtain

he classification scores for each patch. Final classification involves

ttention-wise summation of these patch-wise classification scores.

nvolving attention at this step will allow the network to focus on

elatively more important patches which would not have been pos-

ible if we used simple element-wise summation. 

The major contributions of this paper are the following: (1)

oth local and global features are extracted to preserve the fine-

rained information as well as coarse-grained information of the

mages. (2) We propose a feed forward attention mechanism to

ssign weightage relatively between global and local features, ac-

ording to their significance. Such a method allows the network to

ssign more importance to the least deformed parts of the image

hus enabling the model to be more robust to noise. (3) Dynamic

eighting of local and global features is used based on their con-

ribution to the fused representation. Two different types of fea-

ures together can effectively mitigate respective shortcomings of

ach feature. (4) Final classification involves attention-wise sum-

ation of patch-wise classification scores. It overcomes the limita-

ion of element-wise summation which gives equal importance to

ll patches. 

The rest of the paper is laid out as follows: In Section 2 , we

iscuss some related works regarding development of script iden-

ification. In Section 3 , the proposed attention based script identi-

cation framework has been described in details. In Section 4 , we

rovide the experiment setup and discuss performance results in

etails. Finally, the conclusion is given in Section 5 . 

. Related work 

Script identification is regarded as a well-described problem by

ocument image analysis community. Ghosh et al. [28] provides

 comprehensive review of various methods stated to tackle this

roblem. They classify the approaches into two main categories:

echniques based on structure and visual appearance. 

The techniques involving structure, require precise segmenta-

ion of text connected regions from the image, while methods re-

ying on visual appearance are known for better performance in

i-level text. In the first category, Hochberg et al. [29] used cluster-

ased templates to handle unique characteristic shapes. Spitz and

zaki [30,31] proposed to obtain the vertical distribution of con-

ave outlines in connected components and then identify scripts

t page-level, using their optical density. The authors of [32] con-

idered both vertical and horizontal projection profiles and exper-

mented on them for full-page document identification. Latest ap-

roaches in this division have obtained texture level features from



174 A.K. Bhunia et al. / Pattern Recognition 85 (2019) 172–184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

p  

t  

i  

i  

t  

C  

a  

i  

s  

o  

p  

e  

a  

a  

g  

g  

fi

3

3

 

e  

p  

w  

c  

a  

f  

t  

o  

t  

i  

c  

t  

d  

s  

t  

s  

n  

t  

e  

c  

s  

o  

e

3

 

w  

T  

o  

F  

v  

w  

s  

s  

s  

m  

a

X  

w  

X

Local Binary Patterns [36] or Gabor filters analysis [33–35] . Neural

networks have been also employed [37,38] replacing hand-crafted

features. All the methods mentioned above achieve high accuracy

particularly for printed document images in mind. Also, some of

them need large passages to extract sufficient information and

hence do not perform well for scene text as they generally carry

very less words. 

Although extensive research has been done in script iden-

tification on printed document images, it is quite rare on

non-conventional paper formats. Sharma et al. [39] relied on us-

ing conventional document analysing methods for identification of

video-overlaid text at word stage. They study Gabor filters, Zernike

moments, along with some hand-crafted gradient features earlier

applied in tasks of handwritten character recognition. They over-

came the in-built barriers of video-overlaid text by developing

few dedicated algorithms for the pre-processing step. Gllavata and

Freisleben [21] deals with edge detection in overlaid-text images

using a method that involves wavelet transform. After that some

low-level features are extracted and they make use of a K-NN clas-

sifier. Phan et al. designed algorithms and jointly performed both

script identification and detection of video text overlay in [40] .

They applied canny edge detection on text lines and evaluated con-

nected components of those edges. Then they extracted upper and

lower extreme points for each such component to analyze their

texture properties like cursiveness. Shivakumara et al. [22,41] eval-

uated dominant gradients and explored their skeletons. They ex-

tracted a set of hand-crafted features after analysing the properties

[41] of skeleton components, and studying the spatial [22] distri-

bution of their branch points and end points. The above methods

have been evaluated mainly for text appearing on video. Major-

ity of these methods detect edges of text regions, which cannot

be done for scene text. Also, Sharma et al. [42] identified video-

overlaid text scripts at word level, by employing techniques based

on Bag-of-Visual Words. They outperformed conventional script

identification approaches that considered HoG as gradient based

features or LBP as texture based features, by combining Bag-of-

Features (BoF) and Spatial Pyramid Matching (SPM) with patch

based SIFT descriptors. 

In 2015, the ICDAR Competition on Video Script Identification

(CVSI-2015) [43] came up with a new standard dataset which

tested the document analysis community. Apart from text images

taken from videos of news, sports etc., it also included some ex-

amples of scene text. The most competitive pipelines in the con-

test were all built on CNN. They showed a considerable increase in

accuracy as compared to methods based on hand-crafted features

like HoG or LBP. 

Shi et al. introduced Multi-stage Spatially-sensitive Pooling Net-

work (MSPN) method in [44] , where they provided the first real

scene text images’ dataset for script identification. The MSPN net-

work’s advantage is that unlike traditional CNNs, it does not re-

quire inputs to be of constant dimension. They achieved it by max

pooling/average pooling along each row of the feature represen-

tations obtained at the intermediate levels. Their method is im-

proved in [23] where they combined deep representations and

mid-level features to design a globally trainable deep architecture.

At every layer of the MSPN, local image descriptors were extracted

with an encryption method that helped in CNN weight optimiza-

tion. Nicolaou et al. [45] have presented a method based on hand-

crafted features, a LBP variant, and a deep Multi-Layer Perceptron

achieving superior performance in scene text script identification.

Gomez and Karatzas [58] have proposed a patch-based method

for script identification in scene text images. The method utilized

patch-based CNN features, and the Naive–Bayes Nearest Neighbour

classifier (NBNN). The same authors used a much deeper CNN

framework in their extended work [26] . Moreover, they replaced

the weighted NBNN classifier by a classification scheme based on
atches. The new approach can be integrated in the CNN training

rocedure employing an Ensemble of Conjoined Networks. Thus

heir model had an advantage to learn simultaneously, both mean-

ngful image patch feature maps and their individual significance

n the patch-based classification rule. In [27] , the authors trained

ogether a CNN and a RNN into one globally trainable framework.

NN generates expressive feature maps, while RNN efficiently

nalyzes long-term spatial dependencies. Moreover, they handled

nput images of arbitrary sizes by adopting an average pooling

tructure. From all reviewed methods of script identification the

ne proposed here is the only one based on an attention-based

atch weight classification framework. There are three key differ-

nces in the way we build our framework: (1) Use of attention

etwork for weight calculation of patches to judge their priority

ccording to information they contained, (2) Evaluation of both

lobal and local features and (3) Dynamic weighting of local and

lobal features, using fusion technique for successful script identi-

cation. 

. Proposed framework 

.1. Overview 

Provided a patch from an image I containing a few words, we

stimate its script category c ∈ (1, ���, C ). The brief overview of our

roposed framework is illustrated in Fig. 2 . The end-to-end frame-

ork broadly contains three stages. In first stage, we use a stacked

onvolutional layers structure to extract precise translation invari-

nt image features. The CNN layers generate varying dimension

eature vectors. These vectors are fed into LSTM layer to utilize

he spatial dependencies present in text script images. The sec-

nd stage is an attention network followed by softmax layer to ob-

ain the patch weights. The reason for including attention model

s to give importance to those features which hold more signifi-

ance. The patch-wise multiplication of this attention weights with

he extracted CNN feature vectors yields the local features for in-

ividual patches. These local features contain fine-grained repre-

entation of the text images. To obtain the holistic information of

hese images, global feature is also extracted from the last cell

tate of the LSTM unit. Lastly we employed attention based dy-

amic weighting to integrate both local and global features, ob-

ained in second stage. The classification scores for each patch are

valuated by using a fully connected layer at the end. Final classifi-

ation involves attention-wise summation of these patch-wise clas-

ification scores to get final probability distribution over classes. It

vercomes the limitation of element-wise summation which gives

qual importance to all patches. 

.2. Review of CNN and LSTM module 

We first resize the height of the script image (containing few

ords) to a constant 40 pixels, maintaining the same aspect ratio.

hen, we use sliding window approach to densely extract patches

f size 32 × 32. The step size of the window is chosen as 8 pixels.

or a particular image, starting from the left, we have extracted

ertically two overlapping patches, thereafter shifted 8 pixels right-

ards in the horizontal direction and carried out the same process

uccessively. The particular values of the window scale and step

ize can be justified because they help in designing an improved

cale invariant CNN architecture. The script length determines how

any patches will be created. If D is the maximum patch count for

 query image X 

( i ) , then 

 

( i ) = 

(
X 

( i ) 
1 

, X 

( i ) 
2 

, X 

( i ) 
3 

, . . . , X 

( i ) 
D 

)
(1)

here the superscript refers to i th sample and

 

(i ) 
d 

ε R 

32 × 32 represents the individual patches. 
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Fig. 2. Flowchart of our proposed framework. 

Table 1 

Network configuration of the basic CNN model. 

Type‘ Configuration 

Input 32 × 32 patches 

Convolution Filters: 96, kernel size: 5 × 5, Stride: 1, 

Output size: 96 × 28 × 28. 

Max pooling kernel size: 3, stride: 2, pad: 1, 

Output size: 96 × 15 × 15. 

Convolution Filters: 256, kernel size: 3 × 3, Stride: 1, 

Output size: 256 × 13 × 13. 

Max pooling kernel size: 3, stride: 2, pad: 1, 

Output size: 256 × 7 × 7. 

Convolution Filters: 384, kernel size: 3 × 3, Stride: 1, 

Output size: 384 × 5 × 5. 

Max pooling kernel size: 3, stride: 2, pad: 1, 

Output size: 384 × 3 × 3. 

Convolution Filters: 512, kernel size: 1 × 1, Stride: 1, 

Output size: 512 × 3 × 3. 

Fully connected layer 4096 neurons 

Fully connected layer 256 neurons 
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Our framework design begins with the CNN architecture, which

s used to obtain the text image representations. Each image patch

s passed through this CNN network. The output response of the

NN for each patch in a given image X 

( i ) is a 256 dimension feature

ector. 

 

( i ) 
d 

= CN N 

(
X 

( i ) 
d 

)
∀ d = 1 → D (2)

here Y (i ) 
d 

ε R 

256 . 

We used the CNN model proposed in [26] as it performed well

n many instances for script identification. Our goal was to achieve

he relevant CNN network that would provide optimum perfor-

ance when integrated into our attention model. Hence we var-

ed the different parameters like number of convolutional layers,

umber of filters per layer, size of kernels and fully connected

ayers. Finally, we found that the CNN network in [26] gave the

ost promising results for script identification. The CNN model

onfiguration has been provided in Table 1 . It contains three con-

olutional layers, each associated with pooling. Then an extra con-

olution layer is provided without pooling. Finally, the model ends

ith two fully connected layers. 

The feature representations of all image patches, which are ob-

ained after passing through a CNN network, are eventually fed to

 LSTM following the same order of patch extraction. Spatial de-

endencies within text lines are overlooked by many of the previ-

us approaches. However, it may be a critical step for script iden-

ification. RNN models are available which handle sequences and

his allows the input text images to have arbitrary length. This nat-

rally solves the issue while exploiting the spatial dependencies

ithin text lines. 

If an input vector x = ( x 1 , x 2 , . . . , x T ) is provided, the RNN com-

only used is: 

 t = f ( x t , h t−1 ) (3) 

The hidden state h t simultaneously considers the current input

 t , as well as the earlier hidden state h t−1 stored in the RNN block.
he hidden states undergo a linear transformation to produce the

NN output. 

Despite RNN being useful in dealing with sequence based prob-

ems, it has a disadvantage of vanishing gradient problem during

ack-propagation [46] . This restricts RNN’s capability of handling

onsiderably long contextual information. Vanishing gradient and

xploding gradient are barriers in this task, due to presence of

ong text in script identification. The learning time increases and

eights begin to oscillate, deteriorating the quality of the net-

ork. We redesign the unit using Long Short Term Memory (LSTM)

47] to elude the effect. LSTM addresses the issue by proposing

hree gating units: input, output and forget. These gates are incor-

orated into a block to model large long-temporal dependencies by

reserving the gradient norm during back propagation. Input gate

etermines the amount of input information to be stored in hid-

en state. Output gate focuses on which hidden state information

hould be included in current time step output. Forget gate decides

he hidden state information that should not be further remem-

ered. The gates operate based on the present input and previous

idden state. The hidden layer function is calculated using the fol-

owing composite functions. 

 t = σ ( ω xi x t + ω hi h t−1 + ω ci c t−1 + B i (4) 

f t = σ ( ω x f x t + ω h f h t−1 + ω c f c t−1 + B f (5) 

 t = f t c t−1 + i t tanh ( ω xc x t + ω hc h t−1 + B c (6)

 t = σ ( ω xo x t + ω ho h t−1 + ω co c t + B o (7) 

 t = o t tanh ( c t ) (8) 

here i, o and f correspondingly denote the input, output and for-

et gates. σ refers to the logistic sigmoid function and c stands

or cell. The subscripts of the weight matrix are self-explanatory

ike ω hf which means the hidden-forget gate matrix, ω xo means

he input-output gate matrix etc. The cells to gate weight matri-

es are diagonal. A particular element A of the cell vector is the

ole input to element A of each gate vector. The bias expressions

B i , B f , B c , B o ) have been discarded to keep simplicity. 

Following the method in Shi et al. [23] , we stacked two LSTM

ayers for better abstraction ability. The number of time steps in

he LSTM layer depends on the number of patches obtained for

ach image. Hence time steps can vary from 1 to D. The output

rom each time steps is a 512 dimension feature vector. 

 

( i ) 
d 

ε R 

512 ∀ d = 1 → D (9)

Back Propagation Through Time (BPTT) is chosen for learning of

he parameters. Gradients are usually curtailed for clarity without

isturbing the performance evidently. The overall process is shown

n Fig. 3 . In the next section we will introduce an attention net-

ork to compute the patch weights. 
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Fig. 3. Illustration of the training process of the proposed approach. 
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3.3. Attention based patch weight calculation 

Attention is a powerful mechanism that allows neural networks

to focus on some particular portions of the input image in order to

minimize the task complexity and discard irrelevant information.

In the literature there are two types of attention [49] : “hard” at-

tention and “soft” attention. In this work soft attention mechanism

is employed. This means that we will be focusing everywhere at all

times, but we will learn where to place more attention. 

The output from the LSTM unit is passed through an attention

network. The attention scores are computed by 

q ( 
i ) 

d 
= v T a . tanh 

(
W a .h 

( i ) 
d 

+ b a 

)
∀ d = 1 → D (10)

where W a ε R 

256 × 512 , b a ε R 

256 , v a ε R 

256 are all trainable pa-

rameters. 

Now these scores are tied to a softmax layer to produce the

end probability weight distribution, such that the summation of all
ttention weights covering the required patches equals to 1. 

p ( 
i ) 

d 
= 

exp 

(
q ( 

i ) 
d 

)

∑ D 
d=1 exp 

(
q ( 

i ) 
d 

)

p ( 
i ) 

d 
= sof tmax 

(
q ( 

i ) 
d 

)
∀ d = 1 → D 

(11)

here [ p (i ) 
d 

ε R 

D , 
∑ 

d 

p (i ) 
d 

= 1 ]. 

Thus, the attention weights are calculated for the patches. The

atch-wise multiplication of these attention weights with the ex-

racted CNN feature vectors yields the local features for individ-

al patches. For certain scripts like English, Greek, Russian, some

haracters have similar layouts. Hence, it is necessary to capture

ome local patch specific information for discriminating them be-

ause global information is not sufficient in such scenarios. In

ther words, we intend to focus more on some of the specific

atches which contain better script specific distinguishing features.

he local features contain this fine-grained information of the text

mages. The reason for including Attention weights is to give im-

ortance to those features which hold more significance. For any



A.K. Bhunia et al. / Pattern Recognition 85 (2019) 172–184 177 

i

L  

 

s  

t  

p  

t  

o  

t  

i  

a  

g  

f  

(  

s

3

 

a  

o  

a  

f  

f  

c  

t  

w  

s  

w  

t  

l  

a

 

 

c

ϕ  

 

a

c

w

v

w  

t

 

p  

p  

n  

l  

p

φ  

w  

r

z

w  

o  

a  

o  

t

L  

w  

l  

o

 

w  

i  

fi  

i  

u  

n  

e  

i  

t  

a  

c  

w  

a  

T  

t  

w  

i  

t  

t  

m  

s  

fi  

r  

t

4

4

 

e  

f  

2  

t  

G  

h  

n  

v

 

i  

H  

T  

s  

r  

o  

m

 

f  

c  

K  

g  

e  
mage with D patches, local feature calculation: 

f ( 
i ) 

d 
= p ( 

i ) 
d 

.Y ( 
i ) 

d 
∀ d = 1 → D (12)

To retain the holistic information of the images, a comprehen-

ive feature representation is obtained from the last cell state of

he LSTM unit. This is global feature of the entire sequence of

atches. As stated in [47] , LSTMs can be trained to link time in-

ervals which are over 10 0 0 steps even for noisy sequences with-

ut losing short-time-lag capabilities. Hence we can easily extract

he global image representation from the last cell state which takes

nto account all the patches in a text line image. Though there

re many local features for a particular image, there is only one

lobal feature. Now that we have extracted both local and global

eatures, each patch image is represented by two set of features

 L f (i ) 
d 

, G f (i ) ) . In the next section we deal with their dynamic fu-

ion. 

.4. Dynamic weighting of global and local features 

Local and global features are essential in representing an im-

ge. Local features generally hold the fine-grained information of

bjects, while global features represent the contextual information

round objects. Thus integration of the local features and global

eatures is an important step for script identification. These two

eatures are combined to effectively improve the description ac-

uracy. For fusing the two features at patch level, we introduce at-

ention mechanism in our methodology. The low value of attention

eight signifies less importance of that particular patch and sub-

equently we aim to prioritize the global feature using dynamic

eighting in case of such instances. Similarly, the high value of at-

ention weights encourages the network to give higher priority to

ocal patch feature than the global holistic feature representation

daptively. 

This module dynamically assigns weights to the two features

f (i ) 
d 

ε { L f (i ) 
d 

, G f (i ) } by evaluating the coherence between them ac-

ording to the following equation: 

 

( i ) 
d 

= 

2 ∑ 

k =1 

c ( 
i ) 

d,k 
f ( 

i ) 
d,k 

∀ d = 1 → D (13)

The coherence score c (i ) 
d,k 

are obtained in a similar way to the

ttention mechanism. 

 

( i ) 
d,k 

= 

exp 

(
v ( i ) 

d,k 

)

∑ 2 
k =1 exp (v ( i ) 

d,k 
) 

(14) 

here 

 

( i ) 
d,k 

= w 

T 
k . tanh 

(
W k . f ( 

i ) 
d,k 

+ b k 

)
(15) 

here ϕ 

(i ) 
d 

ε R 

256 , v (i ) 
d,k 

ε R 

1 and w 

T 
k 

, W k , b k are trainable parame-

ers. 

Through this manner the final feature representation of each

atch image is obtained. The resulting feature maps of individual

atches are then fed to a fully connected layer that has the same

umber of neurons as the number of classes. Finally, a softmax

ayer outputs the probability distribution over class labels for each

atch. 

( i ) 
d 

= sof tmax ( W f ϕ 

( i ) 
d 

+ b f ) ∀ d = 1 → D (16)

here φ(i ) 
d 

ε R 

n , n is the number of class. Now the final decision

ule would be weighted sum of 

φ(i ) 
d 

over all the patches. 

 

( i ) = 

D ∑ 

d=1 

p ( 
i ) 

d 
.φ( i ) 

d 
(17) 
here p (i ) 
d 

is the attention weight we obtain earlier. In this way, we

btain the final probability distribution z ( i ) over all the classes for

 query image. The following average negative log-likelihood error

ver the training set combined with a regularization term yields

he cost function. 

 

(
Z ( i ) , w 

)
= 

1 

N 

N ∑ 

i =1 

[ −Z ( i ) log 
(
z ( i ) 

)
] + λw 

2 
2 (18)

here, Z ( i ) is the ground truth of the word image, w represents the

earning weights, λ is weight decay parameter and N is the number

f word images in a particular batch. 

Please note that the proposed framework is an end-to-end net-

ork where the model takes the image patches extracted from an

nput text line/word image as input, and at the end it gives the

nal class distribution of that particular text line/word image. We

mpose the supervision with respect to every text line/word image

sing the loss function mentioned in Eq. 18 in order to train the

etwork in an end-to-end manner. We follow a particular patch

xtraction strategy where a 32 × 32 window slides over the entire

mage with a stride of 8 in the both vertical and horizontal direc-

ion. Not all the patches are equally important for discriminating

 particular script and therefore attention mechanism helps to cal-

ulate the relative importance of the image patches by assigning a

eight to all the patches. Hence, a CNN network is used to extract

 256 dimensional latent feature vector from each image patch.

hereafter, these feature representations are fed to LSTM following

he same order of patch extraction in order to obtain the attention

eights. We use the attention weights for two times – (1) at first it

s multiplied with the patch features to obtain the local level fea-

ures. Low value of attention weight will cause the local features

o be less important for that particular patch and adaptively give

ore priority to global feature through dynamic weighting. (2) The

ame weights are also used in the last step while computing the

nal classification results. This will force the network to learn the

elative importance of the image patches and overcome the limita-

ions of using simple element-wise summation. 

( Algorithm 1 ). 

. Experiments 

.1. Datasets 

There exist many datasets [50,40,51] containing scripts of differ-

nt languages. In this work we evaluated our proposed model over

our multilingual video word datasets – CVSI-2015, SIW-13, ICDAR-

017 and MLe2e dataset. The CVSI-2015 [43] dataset contains scene

ext images of ten different scripts: English, Hindi, Bengali, Oriya,

ujrati, Punjabi, Kannada, Tamil, Telegu, and Arabic. Each script

as at least 10 0 0 text images collected from different sources (i.e.

ews, sports etc.). The dataset has three sets – training set (60%),

alidation set (10%) and test set (30%). 

The SIW-13 dataset [23] consists of 16,291 multi-scripts text

mages in 13 classes: Arabic, Cambodian, Chinese, English, Greek,

ebrew, Japanese, Kannada, Korean, Mongolian, Russian, Thai, and

ibetan. The images are collected from Google street view. Some

amples of this dataset are shown in Fig. 4 . Since they are natu-

al scene images, the texts appearing in the images are in different

rientation, fonts, colour and size. These factors make the datasets

uch more challenging for script identification task. 

The ICDAR-2017 [63] dataset has 68,613 cut out word images

or training. The validation set has 16,255 word images. The dataset

onsists of 9 languages Arabic, English, French, Chinese, German,

orean, Japanese, Italian, Bangla. Out of the above languages En-

lish, French, German, Italian share the same Latin script. How-

ver, in our current work, these scripts are assigned the same
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Algorithm 1 

Script identification in natural scene text images and video scripts. 

Input: Natural scene text images converted to D patches of size 32 × 32 

Output: Identified script. 

For each patch X d of X 1 …X D do 

Step 1: Feed patch X d into CNN and obtain feature vector Y d as output 

Step 2: Y d is given as input to the d th cell state of LSTM 

Step 3: Obtain attention weight p d as output from LSTM 

Step 4: Patch wise multiplication of p d with Y d to extract local feature Lf d 
L f d = p d . Y d 

Step 5: If d = D , extract global feature Gf as output from the last cell state of LSTM 

End for 

For each patch X d of X 1 …X D do 

Step 6: Dynamic weighting of global feature Gf with local feature Lf d and apply fully connected layer to classify into scripts 

End for 

Step 7: Final classification which involves attention based weighted summation of D classifications z = 

∑ D 
d=1 p d . φd 

Fig. 4. Examples of scene text scripts in the SIW-13, CVSI-2015, ICDAR2017 and MLe2e datasets. 
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script class: Latin. Additionally, isolated punctuation or other spe-

cial characters are considered as a special script class, namely Sym-

bols. Hence, we have total 7 script classes. 

We also used the MLe2e [26] dataset which is considered as a

Multi-Language end-to-end dataset for the evolution of the scene

text images starting from text region detection to script identifica-

tion and text recognition tasks. But, as we are more interested in

script identification task, we used the pre-segmented text version

of the dataset containing the cropped word images. The dataset

contains 1178 and 643 word images for training and testing re-

spectively of four different scripts, namely Latin, Chinese, Kannada,

and Hangul. Some examples are shown in Fig. 4 . 

4.2. Implementation details 

Here, we describe the architecture of the model used in this

paper. To achieve the optimum CNN architecture that would fit

into our model, we varied necessary parameters and tested the
ifferent versions of CNN on CVSI-2015 dataset. The following

arameters were tuned in this procedure: the size and step of

he sliding window, the base learning rate, the number of con-

olutional, the number of neurons in the fully connected layers,

he convolutional kernel sizes, and the feature map normalisation

chemes. Finally, we concluded that the CNN architecture proposed

n [26] gave the most promising results for our end-to-end model.

he configuration of the CNN model is summarized in Table 1 . 

After CNN, we implemented a simple 2-layer LSTM model. Then

 Softmax layer is used to obtain attention patch weights. This part

as the following configuration: 

• Layer1: 512 hidden LSTM units. 
• Layer2: 512 hidden LSTM units. 
• Softmax layer. 

To prevent over-fitting dataset is enlarged using data augmen-

ation. We use same CNN parameters for all the patches. We ini-

ialize the weights of the model according to the Xavier initializer
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Fig. 5. The generated Attention maps for three scripts from SIW-13 dataset. – (a) Kannada (b) English and (c) Chinese. 

Fig. 6. Graphical representation of script wise performance on SIW-13. 

Fig. 7. Graphical representation of script wise performance on CVSI-15. 
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52] . Rectified Linear Units (ReLU) [53] is applied after the con-

olution and fully connected layers. Batch normalization [54] is
mployed to effectively increase the training speed. The architec-

ure associates the dropout [55] strategy with fully connected lay-

rs. The dropout rate was maintained at 0.5 throughout training.

he network is built with ≈ 12 M parameters. However, usage of

eeper and wider convolutional layers can be beneficial in extract-

ng more complicated features. 

We implement our framework in TensorFlow on a server with

vidia Titan X GPU. Optimization of the network is done with

dam Optimizer. The model is trained for 20k iterations with batch

ize 32 and learning rate 0.001. The weight decay regularization

arameter is fixed to 5 × 10 −4 . The computational cost increases

ith the length of the images resulting more time to converge.

sually the number of patches for each image varies from 10 to

0 in the CVSI dataset. But for a lengthy script this number goes

eyond 100. Thus maximum number of patches allowed is set to

 threshold value N. If the number of patches is more than this

hreshold, then we will choose randomly N patches. In our exper-

ments we take value of N as 100. Also batch size was reduced to

2 to accommodate the GPU’s memory. During evaluation we no-

iced that each image takes roughly 85 ms on average on GeForce

itan X. 
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Fig. 8. Confusion matrices for four datasets (a) SIW-13 (b) CVSI-2015 (c) ICDAR-2017 (d) MLe2e. 
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4.3. Baseline approaches 

We compare our proposed method with several baseline meth-

ods including some traditional approaches like LBP, Basic CNN,

Single-Layer Network, MSPN, DisCNN, Convolutional Recurrent

Neural Network and Ensembles of Conjoined Networks. 

(1) Local Binary Patterns (LBP): LBP [56] is a widely adopted

texture analysis technique. Fixed face images are divided

into several 8 × 8 grids. LBP features are extracted from them

using the vl_lbp function in the VLFeat library [57] . These

features when combined into a new 2784-dimension vec-

tor act as image descriptor. Finally, they classify using simple

SVM. 

(2) Basic CNN (CNN): A traditional CNN architecture, named

CNN-Basic, is also used as a baseline. Since the fully con-

nected layers are present, only fixed dimension images (here

samples are cropped to 100 × 32) can be fed into a conven-

tional CNN structure. SGD is adopted for training the CNN-

Basic. 

(3) Single-Layer Networks (SLN): In [25] Coates et al. proposed

a simple unsupervised feature learning technique using K -

Means clustering to obtain state-of-the-art results in image

classification. We extracted features using the feature learn-

ing code made public by the authors. 

(4) MSPN: Multi-Stage Pooling Network as proposed in [44] .

It has architecture of CNN network that contains multiple

stage horizontal pooling. The outputs of the three pooling

layers are concatenated as a long vector, which is fed to later
fully-connected layers. We use the same architecture as used

in [44] for comparisons. 

(5) DisCNN: In [48] , deep representations and mid-level fea-

tures are jointly trained into an end-to-end deep network.

Training the images with a pre-defined CNN architecture, we

densely extract the local deep feature maps. Based on the

learned discriminative patterns, mid-level representation is

derived by encrypting the local features. 

(6) Convolutional Recurrent Neural Network (CRNN): In

[27] they combined a Convolutional Neural Network (CNN)

and a Recurrent Neural Network (RNN) into a globally train-

able deep model. The CNN network generates expressive

image representations, while the RNN module helps to

efficiently handle input images of arbitrary sizes. 

(7) Ensembles of Conjoined Networks (ECN): In [26] a patch

based classification method is introduced. Image patches are

obtained from the input images following a certain sampling

strategy. Feature representation of each patch is obtained by

using a deep CNN architecture. They used a simple global

decision rule that takes average of the output feature rep-

resentation of the network for all patches in a given script

image. 

.4. Experiments in SIW-13 dataset 

We train and test our model on the SIW-13 dataset consisting

f 13 scripts. For comparison, we evaluate seven other methods as

escribed in the baseline section. 
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Table 2 

Script wise results of different methods on SIW-13. 

Script LBP CNN SLN MSPN DisCNN CRNN ECN Our method 

Ara 64.0 90.0 87.0 – 94.0 96.0 98.0 99.0 

Cam 46.0 83.0 76.0 – 88.0 93.0 99.0 99.0 

Chi 66.0 85.0 87.0 – 88.0 94.0 88.0 92.0 

Eng 31.0 58.0 64.0 – 71.0 83.0 97.0 98.0 

Gre 57.0 70.0 75.0 – 81.0 89.0 99.0 100.0 

Heb 61.0 89.0 91.0 – 91.0 93.0 97.0 99.0 

Jap 58.0 75.0 88.0 – 90.0 91.0 92.0 98.0 

Kan 56.0 82.0 88.0 – 91.0 91.0 89.0 92.0 

Kor 69.0 90.0 93.0 – 95.0 95.0 90.0 93.0 

Mon 77.0 96.0 95.0 – 96.0 97.0 94.0 98.0 

Rus 44.0 66.0 70.0 – 79.0 87.0 95.0 93.0 

Tha 61.0 79.0 91.0 – 94.0 93.0 95.0 95.0 

Tib 88.0 97.0 97.0 – 97.0 98.0 97.0 97.0 

Average 60.0 82.0 85.0 86.0 89.0 92.0 94.0 96.5 
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Table 3 

Script wise results of different methods on CVSI-15. 

Script Google C-DAC HUST CVC-2 CUK ECN Our method 

Eng 97.95 68.33 93.55 88.86 65.69 – 94.20 

Hin 99.08 71.47 96.31 96.01 61.66 – 96.50 

Ben 99.35 91.61 95.81 92.58 68.71 – 95.60 

Ori 98.47 88.04 98.47 98.16 79.14 – 98.30 

Guj 98.17 88.99 97.55 98.17 73.39 – 98.70 

Pun 99.38 90.51 97.15 96.52 92.09 – 99.10 

Kan 97.77 68.47 92.68 97.13 71.66 – 98.60 

Tam 99.38 91.90 97.82 99.69 82.55 – 99.20 

Tel 99.69 91.33 97.83 93.80 57.89 – 97.70 

Ara 10 0.0 0 97.69 10 0.0 0 99.67 89.44 – 99.60 

Average 98.91 84.66 96.69 96.00 74.06 97.2 97.75 

Table 4 

Script identification results of 

different methods on ICDAR-17 

dataset. 

Method Accuracy (%) 

ECN [26] 86.46 

E2E-MLT [64] 88.50 

Our method 90.23 

Table 5 

Script identification results of 

different methods on MLe2e. 

Method Accuracy (%) 

CVC-2 [43] 88.16 

Gomez [58] 91.12 

ECN [26] 94.40 

Our method 96.70 
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The results in this dataset using our method and the baseline

ethods are illustrated in Table 2 . From Table 2 we can see that,

he proposed method consistently outperforms other methods. The

BP approach performs well on those scripts which have larger

ppearance differences. They are easier to distinguish via texture

eatures. The method does not perform well on scripts containing

ertain characters that have strikingly similar layout. LBP is bet-

ered by both Basic-CNN and SLN in logographic type scripts. But

n the similar-subset scripts, they also do not perform that well.

hen we evaluated DisCNN and found that it leads to improve-

ent over previous methods in almost all types of scripts. More

ecent methods CRNN and ECNN which employed CNN-RNN fused

eep networks and patch based CNN network respectively, not

nly bettered performance in logographic scripts but also brought

uge change in the Alphabetic scripts like English, Greek, Russian

tc. Comparing the accuracies of different script classes, we have

hown the confusion matrix in Fig. 8 . Graphical representation of

criptwise performance on SIW-13 has been shown in Fig. 6 . 

Here it is noticed that Arabic scripts and Thai scripts have

igher accuracies than that on other languages. The uniqueness

n writing styles is the reason why these scripts can be easily

ifferentiated from other scripts. However, scripts like Greek, En-

lish, Russian etc. that are mostly based on Latin, are compara-

ively more challenging for identification. On these scripts, all pre-

ious methods obtain lower accuracies because they have similar

olistic representation. This makes it more challenging to identify

hese scripts. But, in our method attention allows the network to

ocus on more relevant and discriminative part of the scripts. Our

ramework slightly improved the performance of these methods. In

ig. 5 some samples of generated attention maps are shown. We

an visualize the relative importance of the patches from the at-

ention maps. High attention is shown in white and low attention

s shown in black. 

.5. Experiments in CVSI-2015 dataset 

We also tested our method on CVSI-15 dataset. Of all text im-

ges, 60% assigned for training, 10% for validation and the re-

aining 30% are for testing. CVSI2015 is relatively more simple,

ith limited variation compared with SIW13 dataset. Table 3 com-

ares our method with the baseline methods on CVSI2015. As no-

iced, Google performs the best while our method also achieves

ompetitive accuracy for the task. Google’s demerit is that it ap-

lies image pre-processing method based on binarization. This

orks fine for only text that has great background, limiting the

ethod’s ability for text identification in natural scenes. However,

ur method does not suffer from this drawback. It can be used for

omplex background and also for slightly distorted images. HUST

44] also achieves a high accuracy due to usage of multiple fea-
ures. Our model applies local and global features with further

ynamic weighting on them. Thus, our model is able to achieve

etter performance. ECN [26] is also able to obtain a good result.

ut the main drawback of this method is that they treat all the

mage patches equally, irrespective of whether they contain rele-

ant information or not. Our method uses attention mechanism to

ive relative importance to the patches. Thus our network is able

o achieve a better classification result. Graphical representation of

criptwise performance on CVSI-2015 has been shown in Fig. 7 . 

.6. Experiments in ICDAR-2017 dataset 

We also evaluated our method on ICDAR-2017 dataset. It con-

ists of 7 script classes. The dataset is quite large as compared to

ther datasets. The validation set is used for evaluating our model.

e compare the results with several other methods like E2E-MLT

64] and ECN [26] . We have implemented those methods and ob-

ained the script identification accuracies on validation dataset as

eported in Table 4 . E2E-MLT uses a VGG-16 model pre-trained on

mageNet dataset along with Global Average Pooling layer after the

nal convolution layer. This method performs moderately on the

ataset. Accuracy obtained from this method is below 90%. It is

vident that this dataset is more challenging with complex back-

round and stylish fonts. ECN [26] also could not perform well on

his dataset. The proposed method outperforms all the previous

ntries and increases the classification accuracy on this dataset by

%. Hence, the result justifies that the proposed additional com-

lexity is worth. 

.7. Experiments in MLe2e dataset 

The results on MLe2e dataset is illustrated in Table 5 . It shows

hat our method performs well on the dataset. It is noticed that,
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Table 6 

Results of different variants of our configuration on different datasets. 

Dataset Variant Configuration Accuracy (%) 

SIW- 

13 

Variant 1 CNN + LSTM(no attention) + Fusion(concatenation) 94.10 

Variant 2 CNN + LSTM(with attention) + Fusion(concatenation) 95.90 

Our method CNN + LSTM(with attention) + Dynamic weighting 96.50 

CVSI- 

15 

Variant 1 CNN + LSTM(no attention) + Fusion(concatenation) 97.25 

Variant 2 CNN + LSTM(with attention) + Fusion(concatenation) 97.65 

Our method CNN + LSTM(with attention) + Dynamic weighting 97.75 

ICDAR- 

17 

Variant 1 CNN + LSTM(no attention) + Fusion(concatenation) 87.30 

Variant 2 CNN + LSTM(with attention) + Fusion(concatenation) 89.14 

Our method CNN + LSTM(with attention) + Dynamic weighting 90.23 

MLe2e Variant 1 CNN + LSTM(no attention) Fusion(concatenation) 94.36 

Variant 2 CNN + LSTM(with attention) + Fusion(concatenation) 95.13 

Our method CNN + LSTM(with attention) + Dynamic weighting 96.70 
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with increasing complexity of the script datasets, the use of atten-

tion mechanism and fusion of local and global features to obtain

a robust feature representation become more important for better

performance. The confusion matrices of all the four datasets are

shown in Fig. 8 . 

4.8. Improvement analysis 

In this section, we provide breakdown of different sub-variants

of our configuration and tested them to analyze the gradual im-

provement. The results are summarized in Table 6 . 

#Variant-1: This variant of our configuration was designed with

only a CNN-LSTM framework without any attention model. This

method extracted local features from patches without assigning

any attention weights. Thereafter, they were simply concatenated

with global features and classified into required classes. It did not

perform so well. This was because due to absence of attention

mechanism it treated all patches equally, irrespective of whether

they provided more details or fewer details. 

#Variant-2: This variant used the attention only once and it

was in CNN-LSTM framework. The patch-wise multiplication of the

attention weights with the extracted CNN feature vectors yields

the local features for individual patches. Global features were also

evaluated. This was followed by simple concatenation of global and

local features and classification into required classes. On apply-

ing attention during generation of local features in CNN-LSTM, we

could focus more on those patches which hold more significance.

Due to this change, script identification results improved slightly

in images having complex background and distortion issues. On the

other hand, simple fusion was a bad approach since feature vectors

became high-dimensional. Redundancy crept in, leading to longer

processing times. For an image patch we were unable to take into

consideration, whether its local feature should be given more pri-

ority or the global feature. 

In this way, we zeroed into our final architecture, which outper-

formed the previous variants by a large margin. Our architecture

had attention in CNN-LSTM design for generation of local features,

which helped while performing dynamic weighting of local and

global features. Unlike previous variants, during fusion we could

decide for a patch, the relative importance of its local and global

features. Again attention was involved in summation of patch-wise

classification scores overcoming the element-wise summation ap-

proach that treated all patches equally. 

5. Conclusion 

In this paper, we presented a novel method for script iden-

tification in natural scene text images and video scripts. We are

the first to introduce attention mechanism in script identifica-

tion. The method generates local features through attention-based
atch weighting scheme and thereby performs dynamic weighting

f local and global features using dynamic weighting technique.

t is fed to a fully connected layer to get classification scores. Fi-

ally, an attention-wise summation is carried out on all patch-

ise classification scores. Experiments performed in four datasets

emonstrate state of the art accuracy rates in comparison with

ther recent approaches. It is worth mentioning that our algorithm

andles many common drawbacks very well. It achieves better per-

ormance when dealing with complex background, distortion, low

esolution of images. 

During our experiments, we have noticed that ICDAR 2017

cript identification dataset contains four different language scripts,

amely, English, French, Italian, and German. However, all these

our different language scripts have been labelled only as Latin

cript. The exact language script is extremely important in order

o recognize the word image, since most of the state-of-the-art

ord recognition models are language dependent. Henceforth, in

cenarios where a common script is used by multiple languages,

dentification of the exact language would be an interesting future

esearch direction. In future we are also looking forward to imple-

ent an end-to-end method which jointly tackles the problem of

ulti-lingual text detection and script identification to make the

ystem more robust. 
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