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a b s t r a c t 

Logo detection in real-world scene images is an important problem with applications in advertisement 

and marketing. Existing general-purpose object detection methods require large training data with an- 

notations for every logo class. These methods do not satisfy the incremental demand of logo classes 

necessary for practical deployment since it is practically impossible to have such annotated data for new 

unseen logo. In this work, we develop an easy-to-implement query-based logo detection and localiza- 

tion system by employing a one-shot learning technique using off the shelf neural network components. 

Given an image of a query logo, our model searches for logo within a given target image and predicts 

the possible location of the logo by estimating a binary segmentation mask. The proposed model consists 

of a conditional branch and a segmentation branch. The former gives a conditional latent representation 

of the given query logo which is combined with feature maps of the segmentation branch at multiple 

scales in order to obtain the matching location of the query logo in a target image. Feature matching be- 

tween the latent query representation and multi-scale feature maps of segmentation branch using simple 

concatenation operation followed by 1 × 1 convolution layer makes our model scale-invariant. Despite 

its simplicity, our query-based logo retrieval framework achieved superior performance in FlickrLogos-32 

and TopLogos-10 dataset over different existing baseline methods. 

© 2019 Published by Elsevier Ltd. 

1

 

o  

l  

A  

b  

g  

e  

a  

D  

m  

b  

t  

c

 

d  

i  

s  

o  

i  

r  

c  

r  

q  

B  

c  

R  

d  

s  

R  

b  

b  

t  

h

0

. Introduction 

Detection of logos in scene images and videos has a number

f useful applications: commercial analysis of brands [1] , vehicle-

ogo detection [2] for intelligent traffic-control systems and even

ugmented Reality [3] . A logo is a unique symbol representing any

rand or organization that expresses its functionality and distin-

uishes the brand and its products from others. A merchant can

asily assess the presence of his brand in television, social media

nd e-commerce sites by searching for the company’s unique logo.

etection and localization of logos is a crucial step in inspecting

arket trends, allowing companies to meet the customers’ needs

y optimizing existing marketing schemes. Automating logo de-

ection will also allow merchants to detect copyright infringement

ases by testing the originality of suspicious advertisements. 

Logo detection problem can be seen as a special case of object

etection [4] in images. The appearance of a logo varies drastically
∗ Corresponding author. 
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n real-world images due to lighting effects, occlusions, rotations,

hearing effects and scales. It is hard to detect different sizes

f logos in a diverse contextual environment with uncontrolled

llumination, low resolution, and high background clutter. In the

ecent years, logo detection has gained a lot of attention from the

omputer vision community [5–10] . Earlier works of logo detection

ely on the bag-of-words approach [11] where SIFT features are

uantized into a vocabulary of learned logo patterns in images.

oia et al. [6] used a novel approach based on homographic

lass graphs to perform both logo localization and recognition.

ecently, significant improvement has been achieved by adopting

eep-learning techniques in this field [7,12,13] . In the meantime,

everal object detection algorithms have been introduced, namely,

-CNN [14] , Fast R-CNN [15] and Faster R-CNN [4] which have

een successfully adapted for the logo detection problem [8] ,

oosting object-recognition performances further. In addition, due

o advent of deep learning, there have been significant progress

n scene-text detection [16] , scene text recognition [17] , script

dentification [18] tasks etc; however, there are very limited recent

https://doi.org/10.1016/j.patcog.2019.106965
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Fig. 1. Illustration of Query-based logo detection problem. 

Fig. 2. Query-based logo detection framework: At-first, the conditional network G takes the query logo image I i q and outputs a latent representation z i ∈ R 1 ×1 ×512 . In the 

main segmentation branch, the target image I i t is taken as input. After 5 stages of down-sampling, the encoder part reduces the input to 8 × 8 × 256. The earlier obtained z i 
is concatenated with last layer of each stage via a tile operation. Suppose, at stage-1, i.e. s = 1, the feature map f i,s is combined with the z i after the necessary tile operation. 

Then, after applying a 1 × 1 convolution on the combined representation, it is further concatenated with its respective layer at the decoder side as shown in the figure. 
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deep-frameworks towards logo detection and recognition in spite

of its complexity. 

Deep-learning based frameworks are largely data-driven, con-

trary to logo-datasets that have several image classes but few

images. Since deployable logo detection models need to be robust

to new unseen logos, the model should be designed to satisfy the

incremental demands for logo classes, contrary to existing meth-

ods which are limited to a set of seen logos and are not scalable

enough for practical deployment. With the current problem setup,

it is impossible for models to work with the logo of any brand. To

meet the need for a scalable solution, we re-design the problem

statement as shown in Fig. 1 . Given a query logo of a particular

company or organization, the main objective would be to find out

whether the logo of the same company or organization is present

in a target image or not. If present, the model fetches its position

within the given scene. 

Following this problem statement, we propose a one-shot

learning based technique to design a framework that adapts to
ew logo classes in a data-efficient way. Recently, one-shot learn-

ng [19] has gained notable attention in learning new concepts

rom sparse data. One-shot image classification [20] and one-shot

mage segmentation [21–24] are some practical applications of

t. Inspired by these works, we propose a one-shot query based

ogo detection framework that consists of two modules: the con-

itioning module and the segmentation module. The conditioning

art takes a query logo image and obtains a latent representation

hich will be used as a conditional input to the segmentation

ranch. The segmentation network is a basic encoder-decoder ar-

hitecture. In order to capture the multi-scale correlation between

he query image and different regions of the target image, we

oncatenate the conditional latent representation with multiple

ayers of the encoder part(segmentation network), followed by

 × 1 convolution. The obtained representation is further com-

ined with the respective layers of the decoder part in order to

etter guide the decoder part of segmentation network to gen-

rate binary segmentation mask, forming a skip-connection like
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rchitecture [25] . When the model detects high similarity between

 query and some particular region of the target image, the net-

ork tries to produce high response at the corresponding portion

f the segmentation map. To apply our model for a new logo-class,

nlike the fine-tuning approach [21] which may require large

umber of training samples with corresponding ground truth data,

ur approach needs only one sample of the logo of a concerned

ompany or organisation. This query logo sample can be obtained

ery easily from the official logo design image or just by cropping

n appropriate logo portion from a scene logo image. In this paper,

e make following novel contributions: 

• We propose a scalable solution for the logo detection prob-

lem by re-designing the traditional problem setting. We

present a query-based logo search and detection system by

employing a simple, fully differentiable one-shot learning

framework which can be used for new logo classes without

further training the whole network. To the best of our

knowledge, ours is the first work to address one-shot query

based deep learning framework for logo retrieval which is

novel in the literature of logo-retrieval research. 
• To deal with the logos of varying sizes, we propose a novel

one-shot framework through multi-scale conditioning that is

specially designed to learn the similarity between the query

image and target image at multiple scales and resolutions. 

. Related works 

Traditional methods: Logo-related research has been carried

ut for over two decades in the area of computer vision and

attern recognition. Earlier, logo recognition and detection were

ategorized as a specific problem of object detection. The primary

odels were developed on geometric object features [26] which

elied on properties of objects such as lines, vertices, curves

nd shapes. Later on, properties of pixel value (luminance or

olor) were introduced as photometric object [27–29] features,

hich eventually replaced the previous ones. These features were

omputed locally, could solve the problem of occlusion to an

xtent and were able to distinguish similar objects better way

27] . Thereafter many logo-related works were carried out with

he methods of content-based indexing and retrieval in trademark

atabases. The main goal is to assist in trademark infringement

etection by checking a newly designed trademark with registered

ogos in archives [30–33] . The task of trademark recognition in

ideos is inherently harder due to loss of quality of original

ogos during processing (e.g. color sub-sampling, video interlacing,

otion blur, etc.). However in this case, it is assumed that the

cquired images are of good quality and moderate distortion free.

ovar et al. [34] applied a heuristic technique to discard sparse or

mall populated edge regions of the images and analysed the set

f significant edges during logo detection. The work in [35] deals

ith the logos that appear on the rigid planar surfaces having

omogeneous colored background in images using Hough Trans-

ormation. Color histogram back projection is applied on candidate

ogo regions [36] to recognize candidate logos. Multidimensional

eceptive field histograms are also used to perform the task of

ogo recognition. Here, the most likely logo region is computed for

very candidate region. Therefore, if a region in the image does

ot contain a logo, the identification precision gets reduced. 

The traditional logo recognition models are well established

n key-point based detectors and descriptors (specially SIFT).

IFT-based models [29] basically take an image and transform

t into a large collection of feature vectors that are invariant

o affine transformations and even robust to different lighting

onditions. One of its main characteristics is the ability to detect

table salient points in the image across multiple scales. On the
asis of this, Lamberto et al. [37] proposed a representation of

rademarks and video frame contents using SIFT feature-points

ainly targeting to detect, localize and retrieve trademarks in a

obust manner, irrespective of irregularities. The classification of

etrieved trademarks is analyzed by matching a set of SIFT feature

escriptors for each trademark instance with the features detected

n every frame of the video. Kleban et al. [38] proposed a logo

etection model by clustering matching spatial configurations of

requent local features and introducing spatial pyramid mining.

lexis and Olivier presented a new content-based retrieval frame-

ork [39] using a thresholding strategy in order to improve the

ccuracy of query images. In [40] , the author described the logo

etection problem as a small object detection problem and solved

t by interactive visual object search through mutual information

aximization. Romberg and Lienhart [41] exploited a large scale

ecognition approach using feature bundling. As feature bundles

arry more information about the image content than single visual

ords, they aggregated individual local features into bundles and

hen detected logos by querying the database of reference images

ased on features. Based on the analysis of the local features and

asic structure, such as edges, curves, triangles, etc. Romberg et al.

42] presented a system by encoding and indexing the spatial lay-

ut of local features found in logos. Revaud et al. [43] introduced

edicated correlation-based burstiness model using a down-weight

echnique for noisy logo detections. Boia et al. [6,44] smartly ex-

loited homographic class graphs to analyze logo localization and

ecognition tasks. It is noteworthy that they used inverted sec-

ndary models to control inverted colors instances. Marcal et al.

45] presents a robust queried-by-example logo retrieval system

here logos are compactly described as a variant of the shape

ontext descriptor. They perform k-NN search in the locality sensi-

ive hashing database to retrieve logos. Jianlong et al. [46] exploits

ocal features to form a visual codebook and build an inverted

le to accelerate the indexing process. Then several groups are

roposed according to the local feature type namely point type,

hape type and patch type. Finally, adaptive feature selection with

eight updating mechanism is used to perform logo retrieval.

inqiao et al. [47] used k-means clustering to develop a visual logo

ictionary, and next, latent semantic indexing and analysis is used

or logo retrieval. Soysal et al. [48] considered spatial similarity of

ocal patterns by utilizing a descriptor for scene logo retrieval. 

Deep learning-based methods: Bianco et al. [12] applied an

nsupervised segmentation algorithm to produce a number of

bject proposals that are more likely to contain a logo object.

hereafter these object proposals are processed through a query

xpansion step in order to deal with the variation of logo in-

tances. Finally, pre-trained CNN model with SVM classifier was

sed for logo recognition. Based on the previous Deep-CNN based

ipeline, Eggert et al. [7] trained an SVM classifier on synthetic

raining examples to compare with a trained classifier on real

mages. The main objective of this approach was to demonstrate

he benefit of using synthetic images during training. Iandola

t al. [13] investigated several variations of GoogLeNet architecture

ncluding GoogLeNet with global average pooling and auxiliary

lassifier after each inception layers. Oliveira et al. [8] exploited

ast R-CNN to detect graphic logos. To tackle the limitation of

arge-scale graphic logo datasets, transfer learning was used to

everage image representation. 

Very recently, Bianco et al. [5] proposed a deep learning

ipeline investigating the benefits of different training choices

uch as class-balancing, data augmentation, contrast normalization,

ample-weighting and explicit modelling of background class. Su

t al. [9] has introduced a framework to generate new training

ata for logo detection by synthesizing context and thus it intends

o increase the robustness against unseen cluttered background.

ased on the similar hypothesis, a more advanced framework
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[49] using Generative Adversarial Networks has been designed

to generate context consistent logo images for training. Su et al.

[50] proposed a incremental learning approach which discovers in-

formative training images from noisy web data in order to improve

the performance. In contrast to these recent works, we here intend

to explore the existing benchmark logo-datasets and design a new

one-shot deep framework for query-based logo retrieval. 

One shot learning: Creditably, one-shot learning requires only a

single annotated image to learn a new class. For few-shot learning,

only a few examples of a class are needed to generalize knowledge

for recognition. In recent years, one-shot learning is applied to

various fields of computer vision such as image classification and

visual question answering. The Siamese network architecture by

Koch et al. [20] has shown that few-shot image classification can

outperform several classification baselines for a binary verification

task. The siamese network makes use of two shared network to

extract features from two input images and a similarity score

between the two feature representations decides the correspon-

dence between the input images. Another important recent work

in few-shot classification is Matching networks [51] that learns to

determine the correct class label for a given query image from un-

seen categories. Discriminative methods described in [52,53] have

the ability to update parameters of a base classifier that has learnt

from training classes, while adapting to new classes for the specific

task. But the complication in adapting classifiers in this manner

is that they are prone to overfitting. Bertinetto et al. [52] trained

two-branch networks, where one branch receives an example

and generates a set of dynamic parameters and second branch

classifies the query image based on those parameters and a set of

learnt static parameters. Noh et al. [54] used a similar approach for

question answering. Most of the existing works on one-shot learn-

ing focus on classification, not structured output. In [21] , a simple

approach is proposed by authors to perform one-shot semantic

segmentation by fine-tuning a pre-trained segmentation network

on a labelled image. But, this method is prone to overfitting. Later,

Shaban et al. [23] introduced a two-branched network to support

dense semantic image segmentation in the one-shot setting. A

N-way (classes) few shot segmentation framework based on metric

learning and prototype learning has been introduced by Dong et al.

[55] . Very recently, Zhang et al. [24] proposed a one-shot semantic

semantic framework with a new mask average pooling operation

[24] . These earlier frameworks do not consider multi-scale infor-

mation, and the performance is limited in real-world logo datasets.

In contrast, instead of overly complicated network design, we

use off-the-shelf neural network components in our architecture

design that is trainable end-to-end. The contribution of the work

lies in following aspects in terms of network design choices:

(1) We use a parameterized 1 × 1 convolution layer in order to

measure the similarity in high-dimensional space. (2) A multi-scale

conditioning operation is used in order to handle the logos of dif-

ferent scale. (3) Skip-connection between encoder-decoder parts of

the network is found to be helpful for better information passing. 

3. Problem setup 

The main objective of the logo detection problem is to find

out whether a query logo of a particular company or organization

is present in a target image or not. If it is present, we obtain

a segmentation map containing information about the spatial

location of the query in that target image. More formally, given a

query image I q and a target image I t our job is to find out a seg-

mentation map I m 

which is a binary 2D-matrix. The value 1 in the

segmentation map represents the region containing the query logo

whereas 0 represents background. During training, we have access

to a large number of query target-mask triplets { I i q , I i t , I i m 

} N 
i =1 

where

I i m 

is the semantic segmentation map of I i given the conditional
t 
uery image I i q of various logo classes. In the experiments, we have

een that our model is also able to generalize to unknown logos. 

. Proposed framework 

.1. Overview 

Our proposed end-to-end network can be divided into two

teps: (i) conditioning step and (ii) segmentation step. In the

onditioning part, we extract a conditional latent representation of

he query image through a Convolutional Neural Network or CNN.

he segmentation part of our model is a modified version of the

-Net [25] architecture. The encoder intends to extract more ro-

ust feature information from the target image and subsequently,

he decoder tries to obtain the corresponding segmentation map

onditioned on the latent representation of the query logo-image.

y the word conditioning , we here intend to segment regions of

he target image conditioned on the query latent vector; in other

ords, the regions in target image which have a close similarity

ith the conditional query logo image. In order to overcome the

ossibility of drastic mismatch in scale and resolution between the

uery logo and the target image containing that logo, we encour-

ge the model to learn multi-scale conditioning by combining the

ogo representation at different scales to the encoder part of the

-Net architecture. The proposed one-shot learning framework is

ully differentiable and the two-branch architecture can be trained

n an end-to-end manner. 

.2. Conditioning module 

Logo-to-dense feature map conversion is a primary step in

ur architecture. Examining the power of extracting robust task-

pecific feature representation of convolutional networks, we use

 CNN as the feature extractor. For this purpose, at first, we resize

ach query logo image to a fixed size of 64 × 64. Next, we feed

he query image I i q to the network G (.) which encodes the image

o a latent representation z i . Specially, the logo image is converted

nto a multichannel feature vector of unit spatial dimension (i.e.

 × 1 × 512) for further use. Thus, 

 

i = G (I i q ; θG ) , (1)

here z i ∈ R 

1 ×1 ×512 and θG is the parameter of the network. We

dapt VGG-16 like architecture consisting of 13 convolution layers

ith rectified non-linearity (ReLU) activation after each layer. After

 max-pooling layers, the input image gets converted to 1 
2 6 

shape

f feature map giving a final feature representation of dimension

 × 1 × 512. 

.3. Multi-scale segmentation module 

In this section, we describe our multi-scale segmentation mod-

le. Given a target image I i t and the obtained latent representation

 

i of query logo, the segmentation network F (.) will try to obtain a

egmentation map I i m 

. Mathematically, 

 

i 
m 

= F (I i t , z 
i ; θF ) , (2)

here θ F is the parameters of the network. Following the ar-

hitecture of U-Net, we have introduced two networks: Encoder

etwork and Decoder network. Encoder network encodes the

arget image to a latent representation. The encoder follows the

ypical structure of a CNN. It consists of a set of two convolution

ayers of 3 × 3 filter size and followed by a 2 × 2 max-pooling

ayer with stride 2. This set of operations are repeated five times

o progressively down-sample the input image until we get a bot-

leneck layer where we get the final latent feature representation.



A.K. Bhunia, A.K. Bhunia and S. Ghose et al. / Pattern Recognition 96 (2019) 106965 5 

I  

n  

s  

t  

t  

o  

W  

r

 

t  

t  

m  

t  

s  

m  

m  

h  

R  

m  

a  

c

 

s  

p  

n  

i  

o  

H  

t  

t  

a  

T  

e  

o

 

w  

a

1  

i  

s  

t  

o  

v  

i  

i  

d  

p  

d  

θ  

h  

l  

t  

t  

p  

o  

m  

p  

b  

w  

t  

t  

c  

a  

i  

f  

l  

r  

o  

f  

a

 

f  

i  

s  

z  

R

fi

F  

w  

p  

i  

t  

i

 

t  

h  

s  

w  

t  

f  

s  

w  

l  

L

L

T  

p  

(  

i

 

b  

p  

r  

i  

t  

s  

f  

c  

c  

e

5

 

o  

u  

t  

e  

o  

t  

i  

i  

u  

m  

t  

c  
n this five-stage down-sampling process we have used increasing

umber of filters: 64, 128, 256, 512 and 512 respectively in each

tage. After, each stage of down-sampling the spatial dimension of

he feature maps are reduced 

1 
2 times. Thus, the final latent fea-

ure map is 1 
2 5 

of the input image. For example, if I t has the shape

f 256 × 256 × 3, then the latent feature map is of 8 × 8 × 512.

e have seen that further down-sampling the obtained spatial

epresentation eventually degrade the results to some extent. 

In order to learn the correlation between the query image and

he target image, a naive approach would be to just concatenate

he latent representations of the two networks. However, the said

ethod has several disadvantages: 1. The scale difference between

he query and the target image makes it difficult to achieve robust

egmentation with a single scale conditioning approach. Thus,

ulti-scale aggregation is required to obtain detailed parsing

aps. 2. Even state-of-the-art logo detection frameworks find it

ard to detect smaller logos and ones present in very large scenes.

ecent works on object detection [56–59] reveal that the feature

ap of the shallower convolution layers have higher resolution

nd are helpful to detect small objects whereas the deeper layers

ontain richer task-specific semantic information. 

Multi-scale conditioning: Taking cues from the aforesaid ob-

ervations, we make use of the in-network hierarchical feature

roduced from feature maps of encoder part of the segmentation

etwork having different spatial resolution. Let, given a target

mage I i t ∈ R 

H×W ×C , the feature map extracted from the s th stage

f the five-stage convolution network be f i,s ∈ R 

H s ×W s ×C s , where,

 s = 

H 
2 s 

and W s = 

W 

2 s 
. Earlier, we got z i ∈ R 

1 ×1 ×512 as the condi-

ional query logo representation. In order to impose condition on

he segmentation network using latent query vector z i , we use

 technique similar to sliding window based template matching.

o measure the similarity between latent query vector z i and

ach discrete feature f i,s mn in f i,s , we use a simple concatenation

peration followed by a 1 × 1 convolution. 

f 
i,s 

mn = Con v s 1 ×1 ([ f i,s mn ; z i ]) , (3)

here f i,s mn represents the feature representation at position ( m, n ),

nd which, upon concatenation with z i gives a vector of size 1 ×
 × (C s + 512 ). The number of 1 × 1 convolutional filters in s th layer

s set to C s , and thus it gives f 
i,s 

mn of dimension 1 × 1 × C s . By this

imple operation ( Eq. (3 )), it tries to capture the similarity between

he latent query vector and feature embedding at ( m, n ) position

f the feature map f i,s from segmentation network. High activation

alues in f 
i,s 

signifies high extent of matching that the query logo

s likely to be present at that location and vice-versa. Mathemat-

cally, lets denote conditional query representation as Z and one

iscrete feature f i,s mn as F . Using 1 × 1 convolution operation with

arameters θ1 × 1 , we int end to model P ( Y | F, Z ; θ1 × 1 ) where Y

enotes the similarity between F and Z . To illustrate, P ( Y | F 1 , Z 1 ;

1 × 1 ) > P ( Y | F 2 , Z 2 ; θ1 × 1 ) when the similarity between F 1 and Z 1 is

igher than F 2 and Z 2 . These parameters of 1 × 1 convolutions are

earnt implicitly from the traditional cross-entropy loss in an end-

o-end manner. In other words, this 1 × 1 convolution is a function

hat takes Z and F as input, and predicts their similarity at its out-

ut in terms of activation values. Unlike other works [24] , instead

f using cosine-similarity computation for feature matching, we

ake such choice mainly because of two reasons: : First , using a

arameterized layer to capture the similarity is expected to be ro-

ust to various kind of deformations, illuminations present in real

ord logo retrieval scenarios. Second , 1 × 1 convolution handles

he intra-class variance well, in other words, sometimes it is found

hat despite same logo-class it has some difference in terms of the

olor of the logo, font used, presence of text inside a logo (for ex-

mple in adidas logos, sometimes the text remains missing). Also,

t is to be noted that we use the final latent query representation
rom conditioning module for multi-scale conditioning at every

ayer in encoder part (segmentation network) since deeper latent

epresentation is supposed to contain better semantic information

f the query logo, instead of using pooled feature representation

rom earlier layers of conditioning module. More comparison with

lternative choices are given in ablation study ( Section 5.5 ). 

For faster and efficient implementation, a tile operation is per-

ormed on z i to convert it to a specific spatial dimension such that

s compatible for concatenation with f i,s : z i,s 
T 

= T ile (z i ; s c ) , where

 c is the scale required to tile z i ∈ R 

1 ×1 ×512 to a new dimension

 

i,s 
T 

∈ R 

H s ×W s ×512 and concatented with f i,s giving a dimension of

 

H s ×W s ×512+ C s . This is followed by a 1 × 1 convolution with C s 
lters: 

 

i,s = Con v s 1 ×1 ([ f i,s ; z i,s 
T 

]) (4)

here F 
i,s ∈ R 

H s ×W s ×C s . Alternatively, it can be interpreted as ap-

lying a sliding window based template matching over the target

mage with stride 2 s (since every max-pooling layers steps down

he spatial resolution of feature-map by a factor of 2) for s th stage

n encoder part of segmentation network. 

The decoder network of the segmentation model is similar to

he encoder part, the only difference being that up-convolution

as been used. Every stage in the decoder path consists of an up-

ampling layer followed by a 2 × 2 up-convolution layer. After that,

e combine this with the previously obtained fused representa-

ion of the corresponding stage. At last, two 3 × 3 convolutions,

ollowed by a ReLU completes the set of operations for a particular

tage. These set of operations are repeated for all the stages until

e get the predicted segmentation map I i m 

through a SoftMax

ayer. At the end, we define a pixel-wise binary cross entropy loss

 which is used to train the complete model. 

 = 

1 

HW 

W ∑ 

i =0 

H ∑ 

j=0 

(
−I i m 

log 

(
I i m 

))
(5) 

he aim of the model is to minimize this loss by updating the

arameter of the both the conditioning ( θG ) and segmentation

 θ F ) modules of the network through back-propagation technique

n an end-to-end manner. 

Some earlier works like Mask-RCNN [60] first predicts the

ounding box using Region Proposal Network(RPN) and then

erforms the instance segmentation as a two steps process. This

equires two separate loss functions for region proposal and final

nstance segmentation, respectively. In contrast, we avoid using a

wo steps process and predict the segmentation map in a single

tep directly, and thus it makes the process faster as well as easy

or implementation. That becomes feasible because of multiscale

onditioning and parameterized similarity matching layer with skip

onnections that helps in better information passing between

ncoder and decoder part of the framework. 

. Experiment 

We have evaluated the performance of our framework in both

ne-shot and traditional settings. In the one-shot setting, given an

nseen conditional query logo image (from the test set), the model

rained on a completely disjoint set of logo classes returns a refer-

nce binary mask for localization. In the traditional setting, on top

f our query-based strategy, we experiment with the traditional

rain-test split strategy used by previous works [9] where some

mages for each logo-class are utilized for training while the rest

s used for evaluation. Despite our one-shot architecture, we eval-

ated the framework in the traditional setup in order to directly

easure our model’s performance against the traditional setting

hat has been adopted by every existing work. Although different

lassification and recognition problems have been extended to
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1 https://github.com/AyanKumarBhunia/Deep- One- Shot- Logo- Retrieval . 
query-based retrieval setups (e.g. image classification to image re-

trieval [61] , handwriting recognition to query-based word spotting

[62] ), not many prior works using deep learning frameworks exist

that addresses logo retrieval in an open-vocabulary scenario and

is robust to challenges like low resolution, cluttered background

etc. While existing methods are designed for more complicated

tasks (e.g. detection and localization of all the logos in the training

set), the boost in performance even in sparse training data plus

the ability to generalize to unseen logos in the wild justifies our

proposal to extend the problem-statement from a traditional to

query-based setup. 

5.1. Datasets 

Our model makes use of binary masks as ground truths.

FlickrLogos-32 [63] is a very popular logo dataset consisting of

boundary box annotations as well as binary masks. Therefore, we

train our model on this dataset. To evaluate the robustness of the

one-shot architecture we explored another dataset Toplogos-10 [9] .

The main reasons to select FlickrsLogos for training and TopLogos

for testing are as follows: (a) To the best of our knowledge,

FlickrsLogos is the only logo dataset which has binary segmenta-

tion mask as ground truth along with bounding box labels. Rest

of the available datasets have bounding box labels only. (b) During

testing, we preferred to use TopLogos because it has instances

of logos of varying sizes and different cluttered background sce-

nario which provides many challenges for logo detection. Brief

discussions of these datasets are given below. 

Training set - FlickrsLogos-32: This dataset comprises 8240

images from 32 different logo classes, each class representing

a particular brand. Each class has 70 images with ground truth

annotations in the form of bounding boxes and binary masks.

To make the dataset congenial for our approach, we ignore 60 0 0

images with no logo class. Thus, we have total 32 × 70 i.e. 2240

images available for our experiments. 

Evaluation set - TopLogos-10: It contains 700 images of 10

different clothing brand logos with various degree of composition

complexity in the logos. Basically, there are ten logo classes:

Adidas, Chanel, Gucci, Helly Hansen, Lacoste, Michael Kars, Nike,

Prade, Puma, Supreme. For every class, there are 70 images

with fully manually labelled logo bounding boxes. But, unlike

the FlickrsLogos-32 it does not have binary mask annotations.

This dataset contains natural images where logo instances in a

variety of context, e.g. Hats, wallets, shoes, shown gels, lipsticks,

spray, phone covers, eye glasses, jackets, peaked caps, T-shirts,

and sign boards. In short, Toplogos-10 represents logo instances

with varying sizes in natural real-world scenarios that provide

real challenges for logo detection. The main reason behind using

TopLogos-10 dataset is to check the generalization ability of our

framework in a completely unseen scenario with more complexity,

which is a pressing need of one-shot framework. Even if TopLogos

has only 10 logo classes, every query-target pair (note that, this

number is large) is unknown to the trained model during testing

and it challenges the model to deal with real one-shot scenarios

like varying logo sizes, different cluttered background etc. 

5.2. Implementation details 

We will discuss some salient details of our model: starting

from data preparation to training and inference details. 

Data preparation: (a) One-shot setting: As discussed earlier,

we have used FlickrsLogos-32 dataset for training our model in

one-shot setting. It contains 2240 images with ground truth anno-

tations. We denote this set as D 

t and their corresponding masks as

D 

m . The images of these two sets are resized to a fixed dimension

256 × 256. Now, we obtain the conditional query logo objects by
ropping the main images with respect to their bounding boxes

ollowed by resizing to a dimension of 64 × 64. This forms the

onditional set of query objects D 

q . Then, we generate a large

umber of triplets from the obtained image sets { D 

q , D 

t , D 

m }. If

 is the number of images per logo class then n × (n − 1) triplet

ombination is possible per class. In total, for 32 logo classes we

et 32 × (70 × 69) i.e. 154,560 triplets. We use 90% of these triplets

s our training set and 10% triplets as validation set. (b) Traditional

etting: In this set-up, our main objective of query-based logo

earch remains unchanged. But, now we generate our training

riplets only from a small set (40 images per class) of the available

ata in the FlickrsLogos-32 dataset. These triplets will be used for

raining the model. And for testing we will use the rest of the

mages for each class. 

Training: We train our model in an end-to-end fashion from

cratch using these large number of generated triplets { I i q , I i t , I i m 

} N 
i =1 

here N is the total number of triplets. The conditioning branch

akes I i q ∈ R 

64 ×64 ×3 as an input and obtains a conditional represen-

ation of the logo object. This representation will be concatenated

ith the segmentation network at different scale. The segmen-

ation branch takes I i t ∈ R 

256 ×256 ×3 as input and tries to predict

 binary segmentation mask I i m 

. We use Gaussian initialization

ith 0.01 standard deviation. We train our model using stochastic

radient descent (SGD) optimizer with initial learning rate 0.0 0 04

nd momentum and weight decay are set to 0.9 and 0.0 0 05,

espectively. The model is trained for 100K iterations with batch

ize of 32 for optimizing loss up to a satisfactory level. We have

mplemented the whole model in Tensorflow and run on a server

ith Nvidia Titan X GPU with 12 GB of memory. 

Testing: In one-shot setting, the main advantage of our model is

hat once it’s trained it can be used for any logo class. To test the

calability and robustness of our model we have used a different

ataset. For traditional setting, we test our model on the same

lickrsLogos-32 dataset but with testing images available for each

lass. 

The final binary segmentation mask is obtained by using a

hreshold of 0.5 on the predicted mask. To obtain quantitative

esults on these datasets, we generate a minimum bounding box

or each logo instances covering the mask from the predicted

inary mask. To attain bounding boxes from the output map, first,

e compute the topmost spatial position T ( x t , y t ), bottom most

inary pixel position B ( x b , y b ), leftmost binary pixel position L ( x l ,

 l ) and topmost binary pixel position R ( x r , y r ). Then, we evaluate

ounding box value X ′ = x l , Y 
′ = y t , H 

′ = y b − y t and W 

′ = x r − x l .

t last, these bounding boxes are compared with the ground-truth

ounding boxes to obtain the Intersection over Union (IoU). For

he performance evaluation, we have used mean Average Precision

mAP) metric for all classes. For the mAP calculation, we choose

he IoU threshold as 0.5. It means that a detection will be consid-

red as positive if the IoU between the predicted and ground-truth

xceeds 50%. As the proposed logo detection technique is based on

egmentation of the logo, we have also included the mean pixel

oU or mPixIoU [64] as another metric for the evaluation purpose.

owever, unlike FlickrsLogos-32 dataset, other dataset does not

ave any pixel level binary annotation. Thus, the mPixIoU metric is

hown only for FlickrsLogos-32 dataset. The code is available here 1 

.3. Baselines 

To exploit the robustness of our approach, we compared the fol-

owing baselines with our proposed approach. 

Fine-tuning: As suggested by Caelles et al. [21] , we fine-tune a

re-trained FCN network (only the fully connected layers) with full

https://github.com/AyanKumarBhunia/Deep-One-Shot-Logo-Retrieval
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Table 1 

Comparison of Logo detection performance on FlickrsLogos-32 dataset following 

traditional setting.“#” denotes query-based frameworks. 

Method mPixIoU mIoU mAP 

Bag of Words (BoW) [41] − − 54.5 

Deep Logo [13] − − 74.4 

BD-FRCN-M [8] − − 73.5 

RealImg [9] − − 81.1 

Faster-RCNN [4] − − 70.2 

SSD [65] − − 67.5 

YOLO [66] − − 68.7 

U-Net [25] 20.3 30.1 40.5 
# SiameseFCN [20] 70.8 77.6 79.4 
# CoFCN [23] 71.4 81.9 84.1 
# SG-One [24] 76.5 84.5 86.9 
# Ours 78.2 86.7 89.2 
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Table 2 

Logo detection performance on Evaluation set following one-shot setting. 

Training set Testing set Method mPixIoU mIoU mAP 

FlickrsLogos 

(20 classes) 

FlickrsLogos 

(12 classes) 

Fine-tuning 15.8 24.1 27.4 

SiameseFCN 36.9 46.5 51.1 

CoFCN 44.6 51.3 59.7 

SG-One 52.3 59.7 64.4 

Ours 59.1 66.3 66.8 

FlickrsLogos 

(20 classes) 

TopLogos 

(10 classes) 

Fine-tuning − − 14.7 

SiameseFCN − − 24.4 

CoFCN − − 29.2 

SG-One − − 36.9 

Ours − − 40.1 
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upervision on the available paired data of a particular logo class

nd test it on the target images. 

U-Net: Here, we focus on the naive way for generating segmen-

ation maps by considering each logo class as a separate semantic

lass. We use U-Net [25] encoder-decoder network that takes the

arget image as input and outputs segmentation map without any

onditional reference. Note that this set-up cannot be extended to

ew classes. 

SiameseFCN: Siamese networks are extensively used for one-

hot classification tasks [20] . In this method, we use two pre-

rained FCNs to extract dense features from query images and

arget images. L1 similarity metric is used to learn the coherence

etween the feature for every pixel in the query image and the

arget image in order to produce a pixel-level binary mask. 

CoFCN: Here, we explore a conditional segmentation network

ased on FCN [23] . At first, we feed query images in the condi-

ional branch to generate a set of parameters θ . We use θ in the

arameterized part of the learned segmentation model, which

akes target images as input and produces a segmentation map. 

SG-One: This one-shot segmentation framework [24] uses a

ew masked average pooling operation to extract the latent rep-

esentation of the query image. However, since our framework

ses cropped query image (i.e. support set), we use simple global

verage pooling instead, and use cosine-similarity followed by a

anh layer for similarity matching with rest setup similar to [24] .

 quite similar one-shot framework has also been addressed for

isual tracking problem [24] . 

.4. Evaluations 

Traditional setting: We have compared our results with the

aselines and some state-of-the-art logo detection methods

8,9,13,41] as well as evaluated the performance using popular

ounding box detectors like Faster-RCNN 

2 [4] , YOLO 

3 [66] and

SD 

4 [65] while opting for VGG as the baseline architecture. Due

o limited data, we initialize this framework with weights trained

n Pascal-VOC dataset (see Table 1 ). Among popular traditional

ogo detectors, RealImg [9] gives highest mAP score of 81.1% and

ses a deep model to synthetically generate training data in order

o improve its performance. Though state-of-the-art object detec-

ors like Faster-RCNN, YOLO, SSD achieve impressive performance

n benchmark object detection datasets, their performance is

imited in FlickrLogos-32 dataset because of limited training data.

or the same reason, the performance of U-Net is poor. Siame-

eFCN, which is a query-based framework, performed moderately
2 https://goo.gl/zQsSka (Faster-RCNN). 
3 https://goo.gl/vUFEuq (YOLO). 
4 https://goo.gl/vxR9c7 (SSD). 

 

 

 

 

n FlickrLogo-32 dataset. CoFCN performed well with a high mAP

f 84.1% which is 3.0% and 9.4% greater than RealImg [9] and

eep Logo [13] respectively. The proposed multi-scale query based

etection technique achieved a better mAP than the previous state-

f-the-art method [9] with 8.1% increase in absolute mAP; our

ival query-based method, SG-One [24] trails by 2.3% mAP value. 

One-shot setting: For the one-shot setup, the results shown in

able 2 indicate the capability of different methods to generalize

o new classes. These results are comparatively lower than the

esults observed in the traditional setting. We realize that this

s because we are trying to evaluate the performance of the

odel on a more open space setting by allowing the system to

etect logo in a target scene from a single reference logo sample;

ontrarily, in the traditional setup, the total number of logo classes

s fixed and 40 images from each logo class were used to train

he model. The fine-tuned baseline produces relatively low mAP

ince it quickly overfits to the fine-tuning data in the support set.

or FlickrLogo-32, our proposed method outperformed the general

ne-tuning based approach by 39.4% mAP value. On TopLogos-10,

hich is a clothing-logo dataset with dense background clutter,

bserved results are relatively low. We demonstrate some quali-

ative results of our framework in Fig. 3 . We have also evaluated

he performance by varying IoU threshold from 0.5 to 0.8 and the

erformance of our framework drops to a limited extent compared

o other competitive methods (see Fig. 4 ), and thus it illustrates

he superiority of our design choices. 

These improvements over other existing one-shot frameworks

20,23,24] are mainly due to following design choices in our

ramework. (1) Multi-scale conditioning (2) Parameterized similar-

ty matching operation through 1 × 1 convolutional layer at every

cale (3) Skip connection between encoder and decoder part of

he network. Overall, our framework is undoubtedly simple, easy

o implement and understand. 

.5. Ablation study 

In this section, we have given a comprehenssive analysis of

ach sub-variant of our framework along with quantitative analysis

or different alternative network design choices. Here, we have

lso shown results for k -shot cases, using k different samples

f the query image as our conditional input serially, and final

inary mask is obtained by logical OR operation between the k

redicted binary maps. For the traditional set-up we have used

lickrsLogos-32 dataset as before. For k -shot setting, we have

rained our model using images of 20 classes of FlickrsLogos-32

ataset and the remaining part is used for testing ( Table 3 ). 

• Variant 1: Here, we use a general U-Net architecture with-

out any conditioning branch(not a query-based framework)

and notice limited performance. 
• Variant 2: In this variant, we use conditional query rep-

resentation, which is concatenated with the latent space

of segmentation module, in order to fetch of the location

https://goo.gl/zQsSka
https://goo.gl/vUFEuq
https://goo.gl/vxR9c7
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Fig. 3. Some qualitative results of our method: In the first two rows we have shown 

results on FlickrLogo-32 using traditional setting and for the next two rows we have 

shown one-shot results on TopLogos-10 dataset. I Here, images are in the following 

order (left to right): query logo, target image, predicted mask, and final detection 

result (shown by boxes on the images), respectively. 

Fig. 4. Performance with varying IoU thresold values. 

Table 3 

mAP (%) of different variants of our configuration on FlickrsLogos-32 dataset 

using traditional setting. 

Method 

k -shot setting Traditional 

Setting 
k = 1 k = 3 k = 5 

Variant 1 − − − 36.5 

Variant 2 59.1 64.5 65.6 82.7 

Proposed 66.8 71.2 71.6 89.2 

Fig. 5. Some failure cases of our frameworks. Yellow box is the Ground-Truth. 

Green box is True Positive. Red box is False Positive. First row illustrates a false- 

positive case where our model wrongly predicts logo instances(marked in red). This 

happens due to certain extent of similarity between the query logo and irrelevant 

patch in the target image. In the second row, it fails to detect a logo instances due 

to different orientation. Third row shows a failure case due to tiny size of the logo 

and irregular illumination. (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.). 
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of query logo in a target image. However, it fails to detect

small logos in images, specifically when the size of the

query logo image and the actual logo present in the target

differs considerably. 
• Proposed Method: We overcome the above problems by

employing a multi-scale conditioning operation. This makes

our model capable of detecting small transformed logos,

which is the one of the major challenges for logo detection. 

Alternative designs: To localize the query logo within the tar-

et scene image, instead of cosine-similarity measure, we focus

n simple concatenation operation followed by 1 × 1 convolution

o learn the correlation. Using a parameterized layer for simi-

arity matching at multiple-scales offers a better performance in

he context of logo detection (see Section 4.3 ). Keeping rest of

he architecture same, we calculate cosine similarity at each spa-

ial position of feature-map from encoder (segmentation) network

ith conditional query latent vector (converted to the same depth

s f i,s using 1 × 1 convolution), followed by a tanh layer and fi-

ally combine to the corresponding decoder stage. This alternative

etwork design achieves mAP values of 64.1% and 87.8%, trailing

urs by 2.7% and 1.4% for one-shot and traditional setting on the

lickrsLogos-32 dataset (same setting as Table 3 ). Also, we tried

sing pooled (Global Average Pooling [67] ) feature representation

f feature maps from multiple layers of the conditional network,

ith an intuition to get a multi-scale representation of the query

ogo and evaluate similarity ( ours ) with feature maps of same stage

rom segmentation network; the results, however, drop by 5.6%.

his signifies that the final latent representation from deep layers

f the conditional network contains higher semantic information of

he logo that can be used as a conditional input to segmentation

etwork to fetch the logo at multiple-scales of the target image. 

Error analysis: Fig. 5 shows some of the failure cases of our

ramework. Here, we have used simple pixel-wise cross-entropy

oss to train the network; however, rotation invariant network de-

ign could be explored on the top of our proposed multi-scale

onditioning framework, so that rotation related error (see sec-

nd row of 5) could be avoided. Adversarial feature deformation
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68] could be used to generalize the model from limited data. In

ddition, it is to be noted that in spite of multiscale-conditioning

t fails in few cases for tiny size of the logo. To alleviate such er-

ors, a feature magnification module like [69] or attention mech-

nism [70] could be helpful. In addition, the imbalance between

oreground-background could be better handled using newly pro-

osed focal-loss [71] which adds a multiplying factor to the normal

ross-entropy loss in order to emphasize on hard, misclassified ex-

mples. 

. Conclusion 

In this paper, we have re-designed the traditional logo detection

roblem setting by proposing a query based logo search system

hat uses a one-shot architecture. The driving idea of our architec-

ure is the use of multi-scale conditioning with a skip-connection

ased architecture that predicts a logo segmentation mask. The

roposed framework is simple and easy to implement. It is capable

f detecting new logo classes without additional training data. 

We demonstrate the effectiveness of our system by doing

xperiment on unseen logos in the wild. From the experi-

ents on publicly available logo detection datasets, we noted

hat our proposed system outperformed the benchmark results

8,9,13,41] without even extending existing logo datasets. 

Though our system is scale invariant, it may fail for logos

hich are tiny in size. A feature magnification module [69] could

e useful to improve the performance in such cases. Also, the im-

alance between fore-ground and background information could

e handled properly to boost the performance further. In future

e plan to work on these to improve the accuracy. 
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