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Abstract
In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely

discrete wavelet and local quantized patterns (LQP) features, are employed to extract two kinds of transform and statistical-

based information from signature images. For each writer, two separate signature models, corresponding to each set of LQP

and wavelet features, using one-class support vector machines (SVMs) are created to obtain two different authenticity

scores for a given signature. Finally, a score-level classifier fusion based on the average method is performed to integrate

the scores obtained from the two one-class SVMs and achieve the final verification score. To train the one-class SVMs in

the proposed system, only genuine signatures are considered. The proposed signature verification method was tested using

four different publicly available datasets to demonstrate the generality of the proposed method. The evaluation results

indicate that the proposed system outperforms other existing systems in the literature.

Keywords Offline signature verification � Texture features � Wavelet transform � Local phase quantization �
Score-level fusion

1 Introduction

Human physiological or behavioural characteristics, bio-

metrics, are commonly used for person identification/au-

thentication in day-to-day life. Handwritten signature, as a

unique human personal characteristic, is an accepted means

of person authentication. However, the manual handling of a

large number of signatures generated everyday is cumber-

some. It demands an automatic algorithmic approach to deal

with the problem of person verification based on handwrit-

ten signatures [1–6]. As a result, many automatic methods

were developed in the literature to deal with the problem of

signature-based person authentication in various applica-

tions including person identification and verification, crime

detection, bank cheque fraud detection, etc. [2–6]. A sig-

nature verification method generally distinguishes between

a person’s original and forged signatures, accepting the

original signatures and rejecting the forged ones. Three

different types of forgeries, namely random, simple, and

skilled, were defined in the signature verification literature

[1]. The skilled forgeries are generated by individuals who

try to mimic an original signature and create one as close as

possible to the original signature. Random and simple for-

gery samples are generated by individuals without any

knowledge about the signers and their signatures. In other

words, a random forgery is a genuine signature written by a

different signer, whereas a simple forgery is a signature

written by a different signer than original signer by looking

at a genuine signature without any practice and prior

knowledge about the signature. Indeed, the problem of sig-

nature verification considering skilled forgeries is more

challenging compared to simple and random forgeries [1, 2].

Considering the type of information used for authenti-

cation, signature verification methods in the literature are

categorized into: online and offline approaches. Online

signature verification models use dynamic information,

such as velocity, acceleration, pressure, stroke order, and

force, whereas in offline systems, signature images are the

static source of information. Therefore, the offline signa-

ture verification is comparably more challenging with

respect to the online signature verification problem [1, 7].
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In the past, support vector machine (SVM) has been

found to be well suited for signature recognition [8, 9].

Mainly, binary-class SVM (B-SVM) was used for mod-

elling handwritten signature images [9]. In B-SVM-based

signature verification methods, it is required to have both

genuine and forged signatures for training. However, in

practice, only genuine signatures are available. Moreover,

local phase quantization (LPQ) and wavelet transform

features were shown their high discrimination property in

biometric analysis [10, 11]. In this work, a novel writer-

dependent offline signature verification model based on

one-class SVM classifiers and two different texture fea-

tures, LPQ and wavelet, is proposed. These two different

texture-based feature extraction methods are considered to

better characterize handwritten signatures by extracting

two types of information (statistical and transformed) from

signature images. For each person’s signature, two separate

one-class SVM models are trained considering LPQ and

wavelet texture features extracted from only genuine sig-

natures. The scores obtained from the two one-class SVMs

are then fused to verify the originality of test signatures.

The reasons for choosing two one-class SVM classifiers are

twofolds: (1) a single classifier may not perform well when

the nature of features extracted from signatures is different,

and (2) finding a single classifier to perform well on dif-

ferent datasets is difficult. As in our proposed feature

extraction methods two different types of features are

extracted, using multiple classifiers with different feature

sets can improve the performance of the system, Moreover,

the performance of multiple classifiers with different fea-

tures can on an average be better than all the classifiers

used separately.

The main contributions of this work are as follows. First,

a writer-dependent signature model by using one-class

SVMs is proposed that takes into account only genuine

signatures for training. Second, wavelet and local quan-

tized patterns (LQP) features, as transform- and statistical-

based texture features, are employed to interpret two kinds

of signature characteristics. Third, a novel score-level

classifier fusion method is employed to obtain final sig-

nature verification results. Finally, a number of experi-

ments using four different datasets collected in different

contexts and languages are performed to evaluate and also

to demonstrate the generality and high performance of the

proposed signature verification system.

The remainder of this paper is organized as follows. In

Sect. 2, the background of the work is reviewed. The

proposed method is illustrated in Sect. 3. Databases,

evaluation metrics, experimental results, and comparative

analysis are presented in Sect. 4. Finally, conclusions and

future work are provided in Sect. 5.

2 A brief literature review

Signature verification methods in the literature follow a

common pipeline composed of: (1) pre-processing, (2)

feature extraction, (3) training a classifier or creating a

knowledge-based model, and (4) verification steps [1, 3].

The pre-processing includes various tasks, such as signa-

ture extraction, noise reduction, image normalization,

binarization, skew/slant correction, and skeletonization [3].

All or a combination of these tasks is generally employed

on signature images in each method to prepare them for the

next step, feature extraction.

Following the pre-processing step, a set of discriminant

features from the pre-processed signature images is

extracted to interpret different aspects of signatures for the

verification purposes. In the literature of offline signature

verification, different feature extraction techniques

including geometric, connected component (CC), direc-

tional and gradient, mathematical transformations, profiles

and shadow-code, texture information, and interest points

were proposed [7, 8, 10, 12–26]. Based on the level of

granularity, feature extraction methods are grouped into

local [9, 10, 12–15, 17–35] and global [7–9, 12, 13, 18, 20,

29, 36–39] approaches.

In the third step, various methods were proposed in the

literature of offline signature verification to create signature

models by training a classifier or creating a knowledge-

based model [2–6]. The created/trained models were then

used to classify a test signature as genuine or forged one.

The signature models are either writer-dependent or writer-

independent. In a writer-dependent approach, a specific

signature model is created for each individual by using a

few number of genuine signatures and random forgeries. In

a writer-independent approach, however, a single model is

created for all the individuals. Hybrid models were also

proposed for signature verification [2–6]. Both writer-de-

pendent and writer-independent models can be designed

using machine learning, and similarity-based approaches.

Neural networks (NNs) [7, 14, 22, 32, 40], Bayes classifier

[12], hidden Markov models (HMMs) [5, 9, 25, 27, 36],

support vector machines (SVMs) [8–10, 17–21, 23, 26, 31,

32, 34, 38, 39], Gaussian mixture models (GMMs) [13],

Gentle AdaBoost algorithm [30], and ensembles of classi-

fiers [31], as machine learning approaches, were used for

signature verification in the past. As similarity-based

approaches, different fuzzy membership functions (Tak-

agi–Sugeno, trapezoidal, and triangular) [30, 41–45],

K-nearest neighbour (KNN), dynamic time warping, and

point matching [12, 13, 15, 19, 22, 24, 27–29, 36, 37] were

also been developed in the literature for signature verifi-

cation. Moreover, symbolic representation-based approach

was also employed for signature verification [21, 35, 46].
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There are also many review papers in the literature to

demonstrate the state-of-the-art methodological develop-

ments in the field of signature identification/verification

[1–5]. A number of competitions were further organized to

fairly evaluate the existing signature verification methods

and report recent signature verification results and tech-

nological achievements [6, 16]. It is worth mentioning that

the literature of offline signature verification is well

established, and a significant progress was demonstrated in

this area. However, the methods presented in the literature

of offline signature verification have a number of limita-

tions [35] as illustrated in Table 1. In addition to the lim-

itations mentioned in Table 1, there are also some more

challenges [3] in the area of offline signature verification

that still attract many researchers to further investigate in

this field. The general challenges can be listed as: (1) a low

inter-class variability between every individual’s genuine

signatures and skilled forgeries, (2) a high intra-class

variability in every individual’s handwritten signatures

compared to the other individual’s biometrics, (3) a limited

number of signatures for creating offline signature verifi-

cation models, and (4) only genuine signatures available

for creating offline signature verification models. Further-

more, we noted that only a few research works reported the

use of hybrid features and score-level fusion for signature

verification in the literature [30]. Therefore, the use of two

different texture features (hybrid) and a score-level fusion

technique for the verification of offline handwritten sig-

natures is proposed in this research work.

3 Proposed method

The block diagram of the proposed system is given in

Fig. 1. The proposed system is divided into four major

steps: (a) pre-processing, (b) feature extraction, (c) one-

class SVM classification, and (d) fusion scores rule. Each

step of the proposed method is detailed in the following

subsections.

3.1 Pre-processing

Due to some unavoidable variations, in terms of size, pen

thickness, rotation, and translation, in the signatures written

by an individual, it is necessary to pre-process the signature

images. The initial pre-processing task is the binarization

of signature images. The Otsu’s algorithm is, therefore,

applied, and an optimal threshold is calculated separating

the white pixels and black pixels so that their inter-class

variance is maximal [47]. A Gaussian filter is further used

to eliminate the noises from the input signature images and

enhance the quality of the images. Finally, signature ima-

ges are cropped to make the features invariant to transla-

tion. The cropped images are then used for feature

extraction. Figure 2 illustrates the different pre-processing

tasks employed on an input signature image.

3.2 Feature extraction

In any pattern recognition problem, feature extraction is a

crucial step. In our approach, two types of texture features:

local phase quantization (LPQ) [48] and discrete wavelet

transform features (DWT) [49] are considered as feature

extraction methods to obtain statistical and transform

information from a given signature image. LPQ is used for

Table 1 Overview of different signature verification methods and their limitations

Type/approach Limitations

HMM-based

methods

Perform poor when a small number of signatures are used for training, and the model needs to be retrain whenever a new

signer is added to the system

NN-based methods Need sufficient data for training and convergence, and the system needs to be retrained when the number of signature

classes is changed

SVM-based methods Need to determine a proper kernel and tune its parameters, and it is complex and needs extensive memory for large-scale

tasks

GMM-based

methods

Need to determine the best number of the Gaussian models for the system cannot be generalized and predict accurately

when using new data

Bayesian-based

methods

Need prior knowledge, and the posterior distributions are also influenced by the prior knowledge

Similarity-based

methods

Need to find a suitable distance, and it is also sensitive to unrelated features as all features contribute equally to the

similarity measure

Symbolic-based

methods

Need diverse signature samples from every person to obtain an appropriate mean and standard deviation in order to

construct a representative symbolic model for the person

Neural Computing and Applications

123



feature extraction in our proposed method, as it is a spatial

blurring method, which is able to represent all spectrum

characteristics of an image in a very compact feature rep-

resentation. Wavelet features alone were used for offline

signature verification in the literature [10]. A key advan-

tage of wavelet transforms compared to other transforma-

tion functions, such as Fourier transforms, is temporal

resolution, which captures both frequency and location

information, called location in time [49]. Therefore,

wavelet transform-based feature is further used to be

complementary to the statistical-based LPQ feature.

3.2.1 Local phase quantization

LPQ is a blur intensive texture feature extraction method

[48]. The spatial blurring of an image (g(x)) can be rep-

resented by a 2D-convolution between the original image

(f(x)) and a point spread function or PSF (h(x)), where the

vector x represents the coordinate x1; x2½ �T . The spatial

blurring of f(x) can be expressed by a mathematical model

[48] as follows:

g xð Þ ¼ f xð Þ � h xð Þ ð1Þ

In the frequency domain, the convolution becomes a

product operation [48] described as:

G uð Þ ¼ F uð Þ � H uð Þ ð2Þ

where u is a frequency and G uð Þ, F uð Þ, and H uð Þ are the

discrete Fourier transforms (DFT) of the blurred image

(g(x)), the original image (f(x)), and the PSF (h(x)),

respectively. Furthermore, if we consider the phase of the

spectrum, then the relation turns into a summation state-

ment as \G ¼ \F þ \H.

The magnitude and phase can be separated into two

forms as demonstrated in the following.

G uð Þj j ¼ F uð Þj j � H uð Þj j and \G uð Þ ¼ \F uð Þ þ \H uð Þ
ð3Þ

If h(x) is centrally symmetric, i.e. h xð Þ ¼ h �xð Þ, then H

is always a real value, i.e. \H 2 0; pf g:. For every pixel x

from the image f(x), the local spectra are computed using a

short-term Fourier transform (STFT) in the local neigh-

bourhood Nx as follows:

F u; xð Þ ¼
X

y

f yð ÞxR y� xð Þe�j2puTy ð4Þ

where xR xð Þ is a rectangular window function [48].

The local Fourier coefficients are computed at four

low frequency components: u1 ¼ a; 0½ �T , u2 ¼ 0; a½ �T ,
u3 ¼ a; 0½ �T , u4 ¼ a;�a½ �T where a is small enough to

satisfy H uið Þ� 0: For each point x, we can write

F ¼ F u1; xð Þ;F u2; xð Þ;F u3; xð Þ;F u4; xð Þ½ �.
The phase information can be counted using a simple

scalar quantization qj.

qj ¼
1; gj � 0

0; otherwise

�
ð5Þ

where gj is the jth component of the vector

xð Þ ¼ Re F xð Þ; Im F xð Þf gf g. Then, the label image is

defined as:

fLPQ xð Þ ¼
Xp

j¼1

qj xð Þ2j�1 ð6Þ

Fig. 1 Block diagram of our proposed signature verification method

Fig. 2 a Original image,

b image after binarization, and

c image after filtering and

cropping process
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Finally, from Eq. (6), a histogram of 256-dimensional

feature vector is created and considered as LPQ features

[48] for each signature image in our experiments.

3.2.2 Wavelet features

The discrete wavelet transform (DWT) [49] is a powerful

tool in signal processing. DWT transforms a signal x tð Þ
into a highly redundant signal of two variables: scale (j)

and translation (k) as shown in the following

WW j; kð Þ ¼
Zþ1

�1

x tð Þw�
j;k tð Þd ð7Þ

whereWW j; kð Þ represents the wavelet transform coefficient

and w is the mother wavelet.

wj;k tð Þ ¼ 1ffiffiffiffiffi
2 j

p w
t � k2 j

2 j

� �
ð8Þ

The DWT of the signal x is then calculated by

employing a low-pass and a high-pass filter simultaneously

on the input signal (Fig. 3).

In the DWT tree presented in Fig. 3, H and L denote

high-pass and low-pass filters, respectively. The symbol # 2
denotes sub-sampling. Outputs of the filters are given by

the following equations

ajþ1 p½ � ¼
X1

n¼�1
l n� 2p½ �aj n½ � ð9Þ

djþ1 p½ � ¼
X1

n¼�1
l n� 2p½ �dj n½ � ð10Þ

where aj is used for the next step of the transform and dj
determines output of the transform. l[n] and h[n] are the

coefficients of low-pass and high-pass filters, respectively.

In DWT, the input images are divided into four sub-

bands, i.e. LL, LH, HL, and HH, where LL is the average

component or approximation image and LH, HL, and HH

are the three detail components. The LL sub-band can be

decomposed again and thereby producing more sub-bands

[49]. This process can be carried out in many levels. The

features obtained from these approximation and detail sub-

band images at different levels uniquely characterize tex-

tures. The statistical mean and standard deviation of the

transformed image are computed as follows:

mean mð Þ ¼ 1

N2

XN

x;y¼1

w x; yð Þ ð11Þ

Standard deviation Sð Þ ¼ 1

N2

XN

x;y¼1

w x; yð Þ � mð Þ2
" #2

ð12Þ

where w x; yð Þ is the wavelet transform of the image at x; yð Þ
and N is the size of the input image. The values calculated

using Eqs. (11) and (12) are considered as the DWT fea-

tures. As a result in our experiments, a feature vector of

size 120 features is extracted from each signature image.

3.3 One-class SVM

Bi-class SVMs (B-SVM) have frequently been used to

discriminate between genuine and forged signatures in the

literature [9]. However, in a real scenario, only genuine

signatures are available to train a signature verification

system. Therefore, one-class SVM is a better choice

compared to other classifiers, such as regression and neural

networks, to handle a signature verification problem. One-

class SVM is a special case of normal SVM that has been

adapted to the one-class classification problem [50]. It

separates all the data points in a feature space from the

origin and maximizes the distance from the hyper-plane to

the origin. The function returns ? 1 in a small region near

the training data points and - 1 otherwise. To separate the

dataset from the origin, the following quadratic mini-

mization function needs to be solved subjected to satisfying

the other two conditions defined below

min
w;ei;b

1

2
w2 þ 1

#n

Xn

i¼1

ei � b

w � ; xið Þð Þ� b� ei and ei � 0; for all i ¼ 1; . . .; n

ð13Þ

where # is a tuning parameter. Due to the importance of

this parameter, the one-class SVM is often called #-SVM.

If w and b solve this problem, then the decision function

f xð Þ ¼ sign w � ; xð Þ � bð Þ will be positive for most exam-

ples xi in the training set [50]. Each SVM includes a kernel

function defined as K x; x0ð Þ ¼ ; xð ÞT; x0ð Þ. Popular choices
for the kernel functions are linear, polynomial, and sig-

moidal of which radial base function (RBF) is the most

used kernel function described as follows:

K x; x0ð Þ ¼ exp �kx� xk2

2r2

 !
ð14Þ

where the r 2 R is a kernel parameter.

By using a Lagrange technique and a kernel function,

the decision function becomes:

Fig. 3 Discrete wavelet transform (DWT) tree
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f xð Þ ¼ sign
Xn

i¼1

aiK x; x0ð Þ � b

 !
ð15Þ

where n is the number of training data. The Lagrange

multiplier ai is computed by optimizing the following

equations:

min
a

1

2

X

i;j

aiajK xi; xj
� �

ð16Þ

subjected to confirming following two equalities:

0� ai �
1

#n
ð17Þ

Xn

i

ai ¼ 1 ð18Þ

In our signature verification framework, the features

extracted from the LPQ and DWT are fed into two separate

one-class SVMs. Based on the training data, two models

for the genuine signatures of each user are formed. The two

trained one-class SVMs (for each individual) provide two

scores for a test signature. The two scores are finally

combined, as explained in the following subsection, to get

a single verification score for the given test signature.

3.4 Fusion rule for classification

Let T denote the target class for which we want to train our

one-class SVM model and X represents an instance. The

probability score of the instance X can be written as: PS ¼
P T

X

� �
: A well-known and extensive approach for calculat-

ing the value P T
X

� �
is to use a sigmoid function. Therefore,

the probability score of a data point x of a particular class j

is given by:

PSj xð Þ ¼ sigmoid
Xn

i¼1

aijK x; x0ð Þ � bj

 !
ð19Þ

sigmoid xð Þ ¼ 1

1þ e�x

As in our proposed model, two separate one-class SVMs

(using two types of features: LPQ and wavelet) are trained

for each signature class, and two probability scores

PSLPQj xð Þ and PSDWT
j xð Þ are obtained for a signature x of

the signature class j. Depend on the information obtained

from different classifiers in an ensemble, there are different

ways of combining the outputs of the classifiers. Based on

the type of classifier outputs, information fusion methods at

the decision level are categorized into three groups: (1)

combining class labels, (2) class ranking, and (3) com-

bining probabilistic outputs [51, 52]. As the outputs of our

one-class SVM classifiers are probability values, a method

from the third group is suitable for information fusion in

our case. In the third group, called combining probabilistic

outputs, there are various fusion strategies, such as average,

sum, product, minimum, and maximum [53]. The average

value of these two probability scores is considered to fuse

the two classification probability scores and obtain a

decision function gj xð Þ, as it provides better verification

results compared to the other fusion strategies, such as

weighted average and maximum operator, in this group.

gj xð Þ ¼
PSLPQj xð Þ þ PSDWT

j xð Þ
2

ð20Þ

Finally, to classify genuine and forged signatures in the

proposed model, the following decision rule is considered.

x ¼ Genuine, if gj xð Þ� Tj
Forgery, otherwise

�
ð21Þ

Tj is an acceptance threshold which is defined as:

Tj ¼ mj þ krj ð22Þ

where mj and rj are the respective mean and standard

deviation computed from the decision function during the

training phase. Moreover, k is a control parameter, which is

tuned during the training phase to obtain optimal results.

It is worth mentioning that feature fusion (concatenating

the feature sets) could be performed to have only a single

one-class SVM instead of two one-class SVMs to avoid

score fusion step. However, experimental results shown in

Sect. 4.2 demonstrate that score-level fusion strategy pro-

vides better results compared to feature-level fusion

strategy.

4 Experimental results and discussion

4.1 Signature datasets and evaluation metrics

Four different offline signature databases, i.e. MCYT [54],

GPDS-300 [45, 55], BHSig260 [56], and CEDAR [8], were

used to evaluate the proposed signature verification

method. The MCYT dataset is composed of 2250 signa-

tures images collected from 75 signers and their associated

skilled forgeries [54]. Each class contains 15 genuine sig-

natures and 15 forgeries. Signatures were collected by

using ink pens and paper [54].

The GPDS-300 dataset contains 16,200 offline signature

images collected from 300 signers [45, 55]. Each signer has

provided 24 genuine signatures. In each class of signatures,

there are 30 skilled forged signatures obtained from ten

different forgers. Generally, the first 160 classes of the

GPDS dataset were used for testing and the last 140 classes

were used for tuning and training the parameters.
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The BHSig260 dataset [56] contains 6240 genuine sig-

natures and 7800 skilled forged signatures collected from

260 Indian native individuals of which 100 sets of signa-

tures were written in Bengali and the rest, 160 sets, were

written in Hindi. Similar to the GPDS-300 database, each

class contains 24 genuine and 30 skilled forged signatures.

The collected data were scanned using a flatbed scanner

with the resolution of 300DPI in grey scale and stored in

TIFF format.

The CEDAR dataset [8] is composed of signatures

collected from 55 signers. Each signer has provided 24

genuine signatures and 24 forged signatures. Hence, the

dataset contains 1320 (55 9 24) genuine signatures as well

as 1320 forged signatures. To get an idea of signatures

collected in each dataset, some samples of genuine and

forged signatures from each dataset are shown in Table 2.

For evaluating the performances of our system, we

considered three commonly used error metrics in the

literature called false rejection rate (FRR), false acceptance

rate (FAR), and average error rate (AER) [35].

4.2 Experimental setting and results

The proposed signature verification method in this research

work is dependent on three parameters, i.e. the percentage

of outliers (#) and kernel parameter (r) used in the one-

class SVM and also acceptance parameter T. To obtain

optimal results, various couples of (#;r) were considered

during training the one-class SVMs using eight genuine

signatures per user from the GPDS-140 dataset for training

and the best couple (#opt ¼ 0:01; ropt ¼ 0:01) was selected

where the average error rate (AER) was the minimum. As

the parameter T itself is dependent on the value k, the

optimal values #opt and ropt were used to tune the param-

eter k. The parameter k was tuned in such a way that the

FRR and FER became equal to obtain an equal error rate

(EER). Theoretically, when the FRR and FER are equal,

values considered for parameters, e.g. k, are optimal values.

The FRR and FAR values obtained using different values

of k for GPDS-140 dataset are plotted in Fig. 4. As can be

seen from Fig. 4, EER was obtained when the value of

k was set to 2.18.

To demonstrate the sensitivity of the results obtained

from other dataset to the parameter k, we further calculated

the parameter k for all other datasets. The values of k for

each dataset (MCYT, BHSig260, and CEDAR) and their

corresponding EER values obtained from the model con-

sidering eight genuine signatures per user for training and

the rest (16) of the genuine signatures and 30 forgeries for

tuning the parameters are illustrated in Table 3. From

Table 3, we can note that the values of k for all the datasets

are nearly the same. Thus, the proposed model is not

sensitive to the parameter k on changing the dataset for

training. As a results, in all the experiments on all the

Table 2 Examples of genuine and forged signatures from four dif-

ferent datasets

Fig. 4 FAR and FRR curves for different values of the parameter k on

GPDS-140 dataset
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datasets, the value of k (= 2.18) obtained from the GPDS-

140 was considered for testing the proposed system.

In our experiments, we used four offline handwritten

signatures datasets, MCYT, GPDS-300, BHSig-260, and

CEDAR. To evaluate our model, several experiments were

carried out using different number of samples from the four

datasets for training and testing the proposed model. In

order to compare our results to those reported in the liter-

ature, we trained our model with 4, 6, 8, 10, 12, 14, and 16

genuine images per user. Table 4 represents different

number of genuine signatures (Ng) and forgeries (Nf) used

from each dataset in the design and evaluation steps of the

proposed signature verification model. It is worth noting

that the data samples used in design and evaluation steps

are totally different and independent.

The error rates in terms of FRR, FAR, and AER

obtained from the proposed signature verification model on

the MCYT, GPDS, BHSig-260, and CEDAR datasets are

shown in Table 5. As for each dataset, we have repeated

ten times the training and the evaluation process with dif-

ferent randomly chosen signature samples, and the average

of FAR, FRR, and AER is provided in Table 5. From

Table 5, we can see that the AERs gradually decrease when

the number of signatures for training increases in all

datasets. The best result was obtained when 16 signatures

used for training in each dataset. It can further be noted that

even when the number of training signatures is less our

model provides good results on the CEDAR dataset. It may

Table 3 Results obtained from the proposed model using different

k for different datasets

Datasets GPDS-300 MCYT offline BHSig-260 CEDAR

K 2.18 2.13 2.11 2.2

EER (%) 12.06 11.46 24.80 7.59

Table 4 Different number of

samples used in design and

evaluation steps

Database #Writers Training (samples per class) Tuning the parameters (samples per class)

Ng Nf Ng Nf

Design step

GPDS-140 140 16, 14, 12, 10, 8, 6, 4 0 8, 10, 12, 14, 16, 18, 20 30

MCYT offline 40 14, 12, 10, 8, 6, 4 0 1, 3, 5, 7, 9, 11 15

BHSig-260 100 16, 14, 12, 10, 8, 6, 4 0 8, 10, 12, 14, 16, 18, 20 30

CEDAR 20 16, 14, 12, 10, 8, 6, 4 0 8, 10, 12, 14, 16, 18, 20 24

Evaluation step

GPDS-160 160 16, 14, 12, 10, 8, 6, 4 0 8, 10, 12, 14, 16, 18, 20 30

MCYT offline 35 14, 12, 10, 8, 6, 4 0 1, 3, 5, 7, 9, 11 15

BHSig-260 160 16, 14, 12, 10, 8, 6, 4 0 8, 10, 12, 14, 16, 18, 20 30

CEDAR 20 16, 14, 12, 10, 8, 6, 4 0 8, 10, 12, 14, 16, 18, 20 24

Table 5 Results obtained from the proposed model considering dif-

ferent datasets for evaluation

Dataset Training Testing FAR (%) FRR (%) AER (%)

Ng Nf Ng Nf

MCYT 4 0 11 15 18.12 20.11 19.12

6 9 13.55 16 14.78

8 7 11.77 12.1 11.94

10 5 8.78 10.23 9.5

12 3 8.00 9.13 8.57

14 1 6.00 6.20 6.10

GPDS-160 4 0 20 30 17.89 18.12 18.01

6 18 15.89 15.18 15.54

8 16 12.56 11.56 12.06

10 14 10.89 9.53 10.26

12 12 8.56 7.5 8.03

14 10 6.12 7.10 6.61

16 8 4.12 4.24 4.18

BHSig-260 4 0 20 30 34.12 27.21 30.66

6 18 27.12 26.12 26.62

8 16 24.10 26.0 25.05

10 14 20.1 24.18 22.14

12 12 18.42 23.1 20.76

14 10 14.30 15.13 14.72

16 8 10.36 11.46 10.91

CEDAR 4 0 20 24 10.12 9.12 9.62

6 18 8.2 8.4 8.3

8 16 7.46 7.86 7.66

10 14 6.12 7.2 6.66

12 12 5.01 6.12 5.57

14 10 3.56 4.18 3.87

16 8 1.14 2.13 1.64
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be because of the presence of diverse signature samples in

the CEDAR.

To demonstrate the effectiveness of our proposed score-

level fusion strategy compared to the feature-level fusion

(concatenating LPQ and wavelet feature sets), and also

signature verification using LPQ and wavelet feature sets

alone, we evaluated all those models using all the datasets

and the results are summarized in Figs. 5, 6, 7, and 8. From

the results plotted on Figs. 5, 6, 7, and 8, it can be noted

that in most of the cases, the wavelet features provide

better results compared to the LPQ features. Furthermore,

feature-level fusion demonstrates better signature verifica-

tion performance (lower AERs) compared to the LPQ and

wavelet features alone. However, the proposed score-level

fusion method significantly increases (between 3 and 5%)

the performance of our signature verification system

compared to the systems using only the LPQ or wavelet-

based features as well as the feature-level fusion strategy.

4.3 Comparative analysis

To compare our proposed method with other approaches, a

number of state-of-the-art signature verification methods

and a recent deep learning-based framework for signature

verification are taken into account. A comparison of the

results obtained from the proposed method using the

optimal and general k for each dataset, and the results of

other approaches presented in the literature on the MCYT,

GPDS, CEDAR, and BHsig260 datasets are provided in

Table 6. From the results shown in Table 6, it can be noted

that the proposed method outperforms most of the state-of-

the-art methods in terms of AER when 8, 12, or 16 sig-

nature samples were used for training the system. It is

worth noting that as we used one-class SVMs in the pro-

posed method and the one-class SVMs generally require

enough data for training to achieve the best performance,

the results obtained from the proposed system when a

lesser number of signature images (e.g. 4) were used for

training the proposed system are not that high as the results

obtained from the system trained with 8, 12, and 16, but

they are still comparable with the state-of-the-art methods.

To get an idea of the performance of deep learning and

the use of a deep neural network (DNN) to learn the fea-

tures instead of using the hand-crafted features, we con-

sidered a DNN, which a two-branch Siamese convolutional

neural architecture, used in [40] to build a signature veri-

fication framework. The DNN [40] was trained using the

same number of (4, 8, and 12) samples from the four

Fig. 5 AERs obtained from the proposed model, feature-level fusion,

and LPQ and wavelet features separately on MCYT dataset

Fig. 6 AERs obtained from the proposed model, feature-level fusion,

and LPQ and wavelet features separately on GPDS dataset

Fig. 7 AERs obtained from the proposed model, feature-level fusion,

and LPQ and wavelet features separately on BHSig-260 dataset

Fig. 8 AERs obtained from the proposed model, feature-level fusion,

and LPQ and wavelet features separately on CEDAR dataset
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datasets considered for training/testing the proposed model

in this research work. The results obtained from the DNNs-

based signature verification model (e.g. for CEDAR data-

set, an AER of 5.13 was achieved when 12 samples from

each individual were used for training and the rest were

used for test) were very close to the results obtained from

the proposed model in this paper. It is worth noting that

DNNs suffer from under-fitting due to less training sam-

ples, and they generally require a large volume of data,

here genuine and forgery signature images, for training to

allow systems to be converged and provide promising

results. However, in real signature verification scenarios,

such as bank applications, it is difficult to collect a large

number of forgery and genuine signatures from different

individuals. Thus, we did not directly compare the results

of the DNN baseline signature verification system with the

results obtained from our proposed method.

5 Conclusion

In this research work, a classifier fusion strategy for sig-

nature verification based on two types of texture features,

LPQ and wavelet, and one-class SVMs were proposed to

combine two scores obtained from two types of informa-

tion in order to achieve a higher signature verification

performance. The proposed method provided considerably

better results compared to the state-of-the-art methods

using different offline handwritten signature datasets for

experiments. From the results, it can be noted that the

score-level fusion strategy is a better choice compared to

the feature-level fusion. Furthermore, in real scenarios,

when only genuine signatures are available for training/

learning classifiers, one-class SVMs are suitable classifiers

to be used for the classification/verification. Choosing a

different type of features, which characterize different

aspects of signature images, can also enhance signature

verification performance.

Since in real world handwritten signatures can be writ-

ten in different scripts, in future research, we plan to

investigate the impact of merging different datasets with

signatures written in different scripts/shapes on the signa-

ture verification performance.
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