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Abstract

Handwritten Word Recognition and Spotting is a chal-

lenging field dealing with handwritten text possessing ir-

regular and complex shapes. The design of deep neu-

ral network models makes it necessary to extend training

datasets in order to introduce variations and increase the

number of samples; word-retrieval is therefore very difficult

in low-resource scripts. Much of the existing literature com-

prises preprocessing strategies which are seldom sufficient

to cover all possible variations. We propose an Adversar-

ial Feature Deformation Module (AFDM) that learns ways

to elastically warp extracted features in a scalable man-

ner. The AFDM is inserted between intermediate layers and

trained alternatively with the original framework, boost-

ing its capability to better learn highly informative fea-

tures rather than trivial ones. We test our meta-framework,

which is built on top of popular word-spotting and word-

recognition frameworks and enhanced by AFDM, not only

on extensive Latin word datasets but also on sparser Indic

scripts. We record results for varying sizes of training data,

and observe that our enhanced network generalizes much

better in the low-data regime; the overall word-error rates

and mAP scores are observed to improve as well.

1. Introduction

Handwriting recognition has been a very popular area of

research over the last two decades, owing to handwritten

documents being a personal choice of communication for

humans, other than speech. The technology is applicable

in postal automation, bank cheque processing, digitization

of handwritten documents, and also as a reading aid for vi-

sually handicapped. Handwritten character recognition and

word spotting and recognition systems have evolved signif-

icantly over the years. Since Nipkow’s scanner [27] and

LeNet [21], modern deep-learning based approaches today

[18, 29, 41] seek to be able to robustly recognize handwrit-

ten text by learning local invariant patterns across diverse

handwriting styles that are consistent in individual charac-

ters and scripts. These deep learning algorithms require

vast amounts of data to train models that are robust to real-

world handwritten data. While large datasets of both word-

level and separated handwritten characters are available for

scripts like Latin, a large number of scripts with larger vo-

cabularies have limited data, posing challenges in research

in the areas of word-spotting and recognition in languages

using these scripts.

Deep learning algorithms, which have emerged in recent

times, enable networks to effectively extract informative

features from inputs and automatically generate transcrip-

tions [31] of images of handwritten text or spot [40] query

words, with high accuracy. In the case of scripts where

abundant training data is not available, Deep Neural Net-

works (DNNs) often fall short, overfitting on the training

set and thus generalizing poorly during evaluation. Popular

methods such as data augmentation allow models to use the

existing data more effectively, while batch-normalization

[15] and dropout [39] prevent overfitting. Augmentation

strategies such as random translations, flips, rotations and

addition of Gaussian noise to input samples are often used

to extend the original dataset [20] and prove to be bene-

fitial for not only limited but also large datasets like Ima-

genet [7]. The existing literature [6, 19, 29, 51] augment

the training data prior to feature extraction before classify-

ing over as many as 3755 character classes [51]. Such trans-

formations, however, fail to incorporate the wide variations

in writing style and the complex shapes assumed by charac-

ters in words, by virtue of the free-flowing nature of hand-

written text. Due to the huge space of possible variances

in handwritten images, training by generating deformed ex-

amples through such generic means is not sufficient as the

network easily adapts to these policies. Models need to be-

come robust to uncommon deformations in inputs by learn-

ing to effectively utilize the more informative invariances,

and it is not optimal to utilize just “hard” examples to do so

[34, 43]. Instead, we propose an adversarial-learning based

framework for handwritten word retrieval tasks for low re-

source scripts in order to train deep networks from a limited

number of samples.
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Information retrieval from handwritten images can be

mainly classified into two types: (a) Handwritten Word

Recognition (HWR) which outputs the complete transcrip-

tion of the word-image and (b) Handwritten Word Spotting

(HWS) which finds occurrences of a query keyword (either

a string or sample word-image) from a collection of sam-

ple word-images. The existing literature on deep-learning

based word retrieval, which cover mostly English words,

make use of large available datasets, or use image augmen-

tation techniques to increase the number of training samples

[19]. Bhunia et al. [3] proposed a cross-lingual framework

for Indic scripts where training is performed using a script

that is abundantly available and testing is done on the low-

resource script using character-mapping. The feasibility of

this approach mostly depends on the extent of similarity be-

tween source and target scripts. Antoniou et al. [2] pro-

posed a data augmentation framework using Generative Ad-

versarial Networks (GANs) which can generate augmented

data for new classes in a one-shot setup.

Inspired by the recent success of adversarial learning for

different tasks like cross-domain image translation [52], do-

main adaptation [44] etc. we propose a generative adversar-

ial learning based paradigm to augment the word images

in a high dimensional feature space using spatial transfor-

mations [17]. We term it as Adversarial Feature Deforma-

tion Module (AFDM) that is added on top of the original

task network performing either recognition or spotting. It

prevents the latter from overfitting to easily learnable and

trivial features. Consequently, frameworks enhanced by

the proposed module generalize well to real-world testing

data with rare deformations. Both the adversarial genera-

tor (AFDM) and task network are trained jointly, where the

adversarial generator intends to generate “hard” examples

while the task network attempts to learn invariances to dif-

ficult variations, to gradually become better over time. In

this paper, we make the following novel contributions:

1. We propose a scalable solution to HWR and HWS in low

resource scripts using adversarial learning to augment the

data in high-dimensional convolutional feature space. Var-

ious deformations introduced by the adversarial generator

encourage the task network to learn from different varia-

tions of handwriting even from a limited amount of data.

2. We compare our adversarial augmentation method with

different baselines, and it clearly shows that the proposed

framework can improve the performance of state-of-the-art

handwritten word spotting and recognition systems. Not

only is the performance improved in the case of low-

resource scripts, but models generalize better to real-world

handwritten data as well.

2. Related Works

Handwriting recognition has been researched in great de-

tail in the past and in-depth reviews exist about it [28]. Nev-

ertheless, the search for a better and more accurate tech-

nique continues to date. Results presented in [16] show

that models should preferably use word-embeddings over

bag-of-n-grams approaches. Based on this, another ap-

proach [29] employed a ConvNet to estimate a frequency

based profile of n-grams constituting spatial parts of the

word in input images and correlated it with profiles of exist-

ing words in a dictionary, demonstrating an attribute-based

word-encoding scheme. In [40], Sudholt et al. adopted

the VGG-Net [37] and used the terminal fully connected

layers to predict holistic representations of handwritten-

words in images by embedding their pyramidal histogram

of characters (PHOC [1]) attributes. Architectures such

as [18, 40, 48] similarly embedded features into a textual

embedding space. The paper [49] demonstrated a region-

proposal network driven word-spotting mechanism, where

the end-to-end model encodes regional features into a dis-

tributed word-embedding space, where searches are per-

formed. Sequence discriminative training based on Connec-

tionist Temporal Classification (CTC) criterion, proposed

by Graves et al. in [10] for training RNNs [14] has attracted

much attention and been widely used in works like [11, 31].

In Shi et al. [31], the sequence of image features engi-

neered by the ConvNet is given to a recurrent network such

as LSTM [11] or MDLSTM [45, 4] for computing word

transcriptions. Authors in [19] additionally included an

affine-transformation based attention mechanism to reori-

ent original images spatially prior to sequence-to-sequence

transcription for improved detection accuracy. In most of

the aforementioned methods, it is important to preprocess

images in different ways to extend the original dataset, as

observed in [18, 19, 20, 29, 35].

The process of augmenting to extend datasets is seen

even in the case of large extensive datasets [19, 7] and in

works focusing on Chinese handwritten character recog-

nition where there are close to 4000 classes in standard

datasets. In a different class of approaches, the process of

online hard example mining (OHEM) has proved effective,

boosting accuracy in datasets by targeting the fewer “hard”

examples in the dataset, as shown in [22, 34, 36, 46]. With

the advent of adversarial learning and GANs in recent years,

several approaches have incorporated generative modeling

to create synthetic data that is realistic [8, 26, 50], following

architectural guidelines described by Goodfellow et al. for

stable GAN training [9]. Papers such as [2] use GANs to

augment data in limited datasets by computing over a sam-

ple class image to output samples that belong to the same

class.

A recent work by Wang et al. [47] describes an adver-

sarial model that generates hard examples by using the gen-

erator [9] to incorporate occlusions as well as spatial de-

formations into the feature space, forcing the detector to

adapt to uncommon and rare deformations in actual inputs
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to the model. In our framework, we use a similar strategy

to make our word-retrieval detector robust and invariant to

all sorts of variations seen in natural images of handwritten

text. Another similar approach, [38], also explores the use

of adversarial learning in visual tracking and object detec-

tion and attempts to alleviate the class-imbalance problem

in datasets, where it is observed that the amount of data in

one class far exceeds another class. Having a larger number

of easy to recognize samples in datasets deters the training

process as the detector is unaware of more valuable “hard”

examples.

3. Handwritten Word Retrieval Models

We use the CRNN [31] and PHOCNet [40] as the base-

line framework for handwritten word recognition and spot-

ting respectively; on top of these, we implement our adver-

sarial augmentation method. Significantly, our model is a

meta-framework in the sense that the augmentation module

can be incorporated along with a ResNet-like architecture

too, instead of the VGG-like architecture adopted originally

in both frameworks.

Convolutional Recurrent Neural Network for HWR:

Shi et al. [31] introduced an end-to-end trainable Convolu-

tional Recurrent Neural Network with Connectionist Tem-

poral Classification (CTC) loss which can handle word se-

quences of arbitrary length without character segmenta-

tion and can predict the transcription of out-of-vocabulary

word images using both lexicon-based and lexicon free ap-

proaches. The ‘Map-to-Sequence’ layer [31] acts as the

bridge between the convolutional and the recurrent layers.

The input is first fed to the convolutional layers; a recur-

rent network is built to make a per-frame prediction for each

frame of the extracted features. Finally, a transcription layer

translates the prediction from the recurrent layers into a la-

bel sequence.

PHOCNet for HWS: The PHOCNet [40] is a state-of-

the-art approach in word-spotting, achieving exemplary re-

sults for both QbE (Query by Example) and QbS (Query by

String) methods. The model reduces images of handwrit-

ten words to encoded representations of their correspond-

ing visual attributes. The PHOC label [40] of a word is

obtained by segmenting it into histograms at multiple lev-

els. The histograms of characters in a word and its n-grams

are calculated and concatenated to obtain a final represen-

tation. Once trained, an estimated PHOC representation is

predicted for input word-images of varying sizes, by using

a Spatial Pyramid Pooling layer [13]. These semantic rep-

resentations of query and word-images can be compared di-

rectly by simple nearest-neighbor search (for QbE) or com-

pared with the output representation of the deep model with

PHOC of word-images in the dataset (for QbS). The PHOC-

Net uses sigmoid activation to generate the histograms in-

stead of Softmax, utilizing a multi-label classification ap-

proach.

4. Proposed Methodology

4.1. Overview

The generic augmentation techniques popularly ob-

served in HWR and HWS frameworks are often insufficient

for models to generalize to real-world handwritten data, es-

pecially in the case of low-resource scripts where existing

datasets are small and cover only a fraction of irregularities

observed in the real world. We propose a modular deforma-

tion network that is trained to learn a manifold of parame-

ters seeking to deform the features learned by the original

task network, thus encouraging it to adapt to difficult exam-

ples and uncommon irregularities.

Let T be the task network whose input is an image I .

By task network, we mean either a word recognition [31]

or word spotting network [40], and the corresponding task

loss be Ltask which can be either CTC loss [31] (for word

recognition) or cross-entropy loss [40] (for word spotting);

we will use the terms task network and task loss for sim-

plicity of description. We introduce an Adversarial Feature

Deformation Module (AFDM) after one of the intermediate

layers of the task network. Let us consider the task net-

work T to be dissected into three parts, namely TA, TB

and R. R is the final label prediction part, predicting either

the word-level transcription for recognition or PHOC labels

[40] for word spotting; TA and TB are the two successive

convolutional parts of task network T . The exact position

of dissection between TA and TB is discussed in Section

5.1. Let us assume F is the output feature map of TA, i.e.

F = TA(I). The warped feature-map, F′, from AFDM is

thereafter passed through TB and R for final label predic-

tion. While the complete task network T is trained with the

objective to correctly predict the output label, the AFDM

tries to deform the features so that T can not predict the

correct label easily. T is thereby enforced to generalize bet-

ter to more discriminative invariances and informative fea-

tures in the handwritten text data. The feature deformation

network A and task network T compete in this adversarial

game while training. During inference, we only use T .

4.2. Adversarial Feature Deformation Module

The AFDM, inspired by Spatial Transformation Net-

works (STN) [17], fulfills our objective of warping the fea-

tures learned by TA to make recognition (or spotting) diffi-

cult for the task-network. The module uses its adversarial

Localisation Network A to predict a set of parameters θ.

These parameters are needed to compute the transformation

matrix Tθ. The Grid Generator generates a sampling grid S

by performing the transformation Tθ on points in the grid S′

representing coordinates in F
′. The obtained grid S repre-
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Figure 1: The architecture of our training network with the Adversarial Feature Deformation Module including the Localisation Network,

Grid Generator and the Sampler inserted in between TA and TB of the task-network. The illustration depicts the use of the AFDM to

uniformly deform the complete feature map F.

sents N points in the original map F where corresponding

points in the target map F
′ should be sampled from such

that the latter appears spatially warped in the manner de-

scribed by Tθ. This grid S and the original feature map are

then passed through a Bilinear Sampler to obtain the tar-

get feature map F
′. Although a number of transformations

[17] can be used in the AFDM, Thin Plate Spline Trans-

formation (TPS) [5] is suggested to be the most powerful

according to Jaderberg et al. [17]. We use TPS because of

its degree of flexibility and ability to elastically deform a

plane by solving a two-dimensional interpolation problem:

the computation of a map R
2 → R

2 from a set of arbitrary

control points [5]. Furthermore, the matrix operations for

grid-generation and transformation in TPS being differen-

tiable, the module can backpropagate gradients as well.

The parameters predicted adversarially by A denote K

control points P = [p1, · · · , pK ] ∈ R
2×K with pv =

[xv, yv]
T pointing to coordinates in F by regressing over

their x, y values, which are normalised to lie within [-1,1].

The Grid Generator uses the parameters representing the

control points in P to define a transformation function for

a set of corresponding control points P ′ = [p′1, · · · , p
′

K ],
called the base control points representing positions in F

′.

Since the base control points are fixed, P ′ is a constant. The

transformation is denoted by a matrix Tθ ∈ R
2×(K+3) that

can be computed as:

Tθ =

(

∆−1
P ′

[

PT

03×2

])T

(1)

where ∆P ′ ∈ R
(K+3)×(K+3) is also a constant. It is given

by:

∆P ′ =





1K×1 P
′T E

0 0 11×K

0 0 P ′



 (2)

where, the element in i-th row and j-th column of matrix E
represents the euclidean distance between the base control

points p′i and p′j . Now, given that the grid of target points

in F
′ is denoted as S′ = {s′i}i=1,··· ,N , with s′i = [x′i, y

′

i]
T

being the x,y coordinates for the i-th point of a total of N

feature-points, for every point s′i we find the corresponding

sampling position si = [xi, yi]
T in F through the following

steps:

e′i,k = d2i,k ln d
2
i,k (3)

ŝ′i = [1, x′

i, y
′

i, e
′

i,1, · · · , e
′

i,K ]T ∈ R
(K+3)×1 (4)

si = Tθ · ŝ
′

i (5)

where di,k is the euclidean distance between s′i and k-th

base control point p′k. We iteratively modify all N points in

S′ using eqn. (5) to define the grid-transform function Tθ(·)
and produce sampling grid S:

S = Tθ({s
′

i}), i = 1, 2, · · · , N (6)

We obtain the grid S = {si}i=1,··· ,N representing sampling

points in F.

The network represented by A includes a final fully-

connected (fc) layer predicting 2K normalized coordinate

values. It is fitted with the tanh(·) activation function, after

which the values are reshaped to form matrix the P. It is to

be noted that the aforementioned equations define the defor-

mation operation executed by the AFDM such that all chan-

nels in our original map are deformed uniformly. In the later

sections, we discuss the partitioning strategy where smaller

sub-maps in F are fed individually into it for deformation.

4.3. Adversarial Learning

Traditional approaches to adversarial learning [9] in-

volve training a model to learn a generator G which given
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a vector z sampled from a noise distribution Pnoise(z) out-

puts an image G(z). The discriminator D takes either the

generated image or real image x from distribution Pdata(x)
as input, and identifies whether it is real or fake. The objec-

tive function for training the network using cross-entropy

loss is defined as:

L = min
G

max
D

Ex∼Pdata(x)[logD(x)]

+ Ez∼Pnoise(z)[log(1−D(G(z)))] (7)

In traditional GANs, Generator G learns a mapping of z

from the noise distribution Pnoise(z) to the data distribution

Pdata(x) over data x. In our framework, G (i.e. AFDM)

learns a mapping of F from the distribution of undistorted

features Pundistorted(F) to the space of distorted features

Pdistorted(F
′).

L = min
G

max
D

EF′∼Pdistorted(F′)[logD(F′)]

+ EF∼Pundistorted(F)[log(1−D(G(F)))] (8)

In our framework, we train AFDM A (analogous to G)

and task network T (analogous to D) alternatively in an ad-

versarial manner. Initially, A generates random deforma-

tions, but with the progress of adversarial learning, it learns

strategies to warp the intermediate feature space so that it

becomes hard to recognize (spot) for T . In other words, the

the generator framework A tries to deform (see Figure 3) the

feature map to make the task harder. Also, we seek to train

the discriminating network, i.e. the task-network T in a su-

pervised manner using labelled samples, while encouraging

it to accurately retrieve handwritten inputs despite deforma-

tions present in them.

Now, instead of deforming F (with height H, width W

and C channels) uniformly, we modify k sub-maps consti-

tuting it in k different ways (k being a value much smaller

than the number of channels C), thereby increasing the

complexity of the task and preventing A from learning

trivial warping strategies. F is divided into sub-maps f1
through fk, each of which has C

k
channels. The m-th sub-

map fm ∈ R
H×W×

C

k is then fed into the A to generate

θm, and compute the grid-transform function Tθm(·). The

latter, as shown in eqn. 1 through 6, transforms a given grid

S′

m to obtain the corresponding grid of sampling points Sm

for points belonging to sub-map fm. The deformed feature

map F
′ is thus computed as:

F
′ = (f1 ⊙ S1) ⊕ (f2 ⊙ S2) ⊕ · · · ⊕ (fk ⊙ Sk) (9)

where ⊕ denotes the channel-wise concatenation opera-

tion and ⊙ denotes the bilinear-sampling mechanism corre-

sponding to the transforms described in [17]. The sub-map

fm is thus sampled to obtain (fm ⊙ Sm) ∈ R
H×W×

C

k , and

concatenated to get F′ having same dimensions as the orig-

inal feature-map F. The AFDM thus learns a function A(·)

that computes the encoded features in the m-th sub-map to

generate θm = A(fm).
In absence of the AFDM (e.g. during testing), the output

F of sub-network TA is further passed through TB and R.

The recognizer R outputs the predicted word-label Lp for

a word image I . The word-label can be either word-level

annotation represented by series of character, or PHOC la-

bel [40] based on the type of system. Let us assume the

ground-truth label for the latter be Lg . Thus our original

word-retrieval loss Ltask can be defined as:

Ltask = Qword(Lp,Lg) (10)

where Qword(·) represents a general function that computes

loss between the prediction Lp and the ground truth label

Lg , which is either the CTC loss used in [31] or the sigmoid-

cross-entropy loss described in [40].

During training, we have two different networks: the task

network T and Localisation Network A. Let us consider

their parameters to be θT and θA respectively. In one it-

eration during training, the data flow in the forward pass

is as follows: I → TA(·) → AFDM(·) → TB(·) →
R(·) → Lp, where AFDM(·) represents the complete de-

formation operation including parameter prediction by A,

grid-generation and sampling operations; the last two do

not involve learning any parameters. A needs to learn fea-

ture deforming strategies through θA so that the recognizer

should fail. We thus obtain θA by maximizing the loss func-

tion Ltask. On the other hand, the θT is optimized to mini-

mize the task loss Ltask.

θA = argmax
θA

Ltask (11)

θT = argmin
θT

Ltask (12)

As a result, if the deformation caused by the AFDM

makes image I hard to recognize, the task network T gets a

high loss and A gets a low loss, else if the modified features

are easy to recognize, the A suffers a high loss instead.

5. Experimentation Details

5.1. Datasets

We use two very popular datasets of Latin scripts,

namely IAM (1,15,320 words) and RIMES (66,982 words)

datasets, used by handwritten document image analysis

community extensively. IAM [24] is one of the largest

datasets available for HWR and HWS in Latin script, allow-

ing us to demonstrate the effectiveness of our feature warp-

ing strategy at different sizes of training sets (see Figure

2). In order to demonstrate the effectiveness of our model

in low-resource scripts (in terms of availability of training

data), we choose two Indic scripts, namely Bangla and De-

vanagari (Hindi), as examples to demonstrate the benefits
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IAM RIMES IndicBAN IndicDEV

WER CER WER CER WER CER WER CER

Handwritten Word Recognition (Unconstrained)

B1 23.14 12.02 16.04 11.17 26.31 14.67 25.35 13.69

B2 25.17 13.08 24.37 12.14

B3 21.58 11.45 14.61 10.37 20.28 11.13 19.07 10.34

B4 19.97 9.81 12.42 7.61 17.67 9.19 16.46 8.34

RARE[32] 19.72 9.69 12.32 7.65 20.15 10.52 19.19 9.72

ASTER[33] 17.01 8.11 10.52 6.62 18.31 9.22 17.22 8.13

MORAN[23] 17.95 8.96 11.27 7.05 19.62 9.83 18.56 9.01

Ours 17.19 8.41 10.47 6.44 15.47 7.12 14.3 6.14

Handwritten Word Recognition (Lexicon)

B1 15.98 10.05 12.51 9.64 16.67 10.21 15.67 9.78

B2 15.87 9.47 14.69 8.41

B3 12.17 8.45 10.13 7.17 11.37 7.64 10.24 6.76

B4 10.24 7.21 7.59 5.56 9.69 5.41 8.67 4.67

RARE[32] 9.93 7.33 7.48 5.25 11.13 7.55 10.20 6.68

ASTER[33] 8.73 5.83 6.17 3.12 9.44 5.42 8.61 4.59

MORAN[23] 9.19 6.52 6.83 3.83 10.52 6.61 9.68 5.46

Ours 8.87 5.94 6.31 3.17 7.49 4.37 6.59 3.97

Handwritten Word Spotting

QbS QbE QbS QbE QbS QbE QbS QbE

B1 83.12 72.67 86.31 77.69 80.37 76.91 81.67 77.61

B2 81.04 77.67 82.64 78.64

B3 85.1 73.67 87.69 79.67 84.67 84.73 85.61 86.19

B4 86.94 75.64 90.34 80.67 87.67 85.49 88.17 86.49

TPP- 92.97 84.80 94.31 85.89 89.21 86.69 89.97 87.82

PHOCNet[42]

Ours 88.69 77.94 92.94 82.67 89.34 86.47 90.13 87.67

Table 1: Performance in (a) Handwritten Word Recognition

(HWR) and (b) Handwritten Word Spotting (HWS) of our

baselines as well as state-of-the-Art approaches on different

datasets.

of adversarial training via AFDM. Hindi and Bangla are

the fifth and sixth most popular languages globally [27] and

use the scripts Devanagari and Bangla, respectively. Both

scripts are far more complex than Latin due to the pres-

ence of modifiers[30] and complex cursive shapes [30] and

are sparse compared to Latin [12, 24]. To the best of our

knowledge, there exists only one publicly available dataset

[3, 30] which contains a total of 17,091 and 16,128 words

for Bangla and Devanagari, respectively. We denote these

two datasets as IndBAN (BANgla) and IndDEV (DEVana-

gari) respectively. For IAM, IndBAN and IndDEV, we use

the same partition for training, validation and testing pro-

vided along with the datasets. For RIMES dataset, we fol-

low the partition released by ICDAR 2011 competition.

5.2. Implementation Details

While experimenting, we notice that it is important to

first pre-train the task network for a certain number of iter-

ations so that it can learn a basic model to understand the

shapes of different characters to an extent. If we start train-

ing both the networks together, we notice that the AFDM

often overpowers the task network and it fails to learn mean-

ingful representation. Therefore, we first train the task net-

work for 10K iterations without the AFDM. Thereafter, we

include the latter to fulfill its adversarial objective of de-

forming the intermediate convolutional feature maps. We

use 500 continuous iterations to train the parameter local-

ization network A alone for better initialization. It is ob-

served that due to the large degree of flexibility TPS often

finds some especially difficult deformations which task net-

work fails to generalize later on. Hence, we use a simple

trick to solve this stability issue: we only deform half of

the data samples randomly in a batch through the AFDM

and the rest are kept unchanged for retrieval; this greatly

improves the stability issue. For the Localisation Network,

we use four convolutional layers with stride 2 and kernel

size 3× 3 followed by 2 fully-connected layers, finally pre-

dicting 18 parameter values using tanh activation. We keep

the number of sub-map divisions (k) to 4. We use a batch

size of 32. Following the earlier initialization, both the task-

network and AFDM are trained for a total of 100K iterations

alternatively. We use Adam optimizer for both task network

and AFDM, however, we keep the learning rate for task net-

work to 10−4 and the same for the Localisation Network of

AFDM is 10−3. PHOCNet consists of 13 convolutional lay-

ers followed by an SPP layer and 3 fully connected layers

and finally predicting the PHOC labels using sigmoid ac-

tivation. We name these conv-layers as follows: conv1 1,

conv1 2, conv2 1, conv2 2, conv3 1, conv3 2, conv3 3,

conv3 4, conv3 5, conv3 6, conv4 1, conv4 2 and conv4 3.

There are two pooling layers (2 × 2) after conv1 2 and

conv2 2. Every convolution layer has a kernel of size 3× 3
and number of filters are 64, 128, 256, and 512 for conv1 X,

conv2 X, conv3 X, conv4 X respectively. On the other

hand, our CRNN framework comprises of 8 conv layers,

followed by a ‘Map-to-Sequence’ and a 2-layer BLSTM

unit. The architecture is: conv1, conv2, conv3 1, conv3 2,

conv4 1, conv4 2, conv5 1, conv5 2, conv6. The first 7

layers have 3× 3 kernels but the last layer has a 2× 2 ker-

nel. There are 64, 128 and 256 filters in conv1 X, conv2 X,

conv3 X, and 512 filters from conv4 1 till conv6; the pool-

ing layers are after conv1, conv2, conv3 2, conv4 2 and

conv5 2. While the pooling windows of the first two pool

layers are 2 × 2, the rest are 1 × 2. Based on the exper-

imental analysis, we introduce AFDM after conv4 1 layer

in PHOCNet, and after conv4 1 layer in CRNN. It is to be

noted that the input is resized to a height of 64 keeping the

aspect ratio same. More analysis is given in Section 5.5.

5.3. Baseline Methods

To the best of our knowledge, there is no prior work deal-

ing with adversarial data augmentation strategy for HWS

and HWR. Based on different popular data augmentation

and transfer learning strategies, we define a couple of base-

lines to demonstrate the effectiveness of the AFDM.

• B1: In this baseline, we perform different image-level
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Figure 2: (a) Word Error Rate (WER) for HWR (unconstrained) and (b) mean Average Precision (mAP) for QbS in HWS for different

number of training samples on standard testing set using different data augmentation strategies on IAM dataset. (c) and (d) represent the

performance using different sub-map partitioning schemes; the setup is described in Section 5.2.

Layers conv3 1 conv3 2 conv3 3 conv3 4 conv3 5 conv3 6 conv4 1 conv4 2 conv4 3

AFDM(TPS) 85.29 85.20 85.97 86.94 87.88 88.19 88.69 87.81 87.77

AFDM(Affine) 84.13 84.12 84.53 85.01 85.33 85.81 86.94 86.02 85.24

Table 2: Mean Average Precision (mAP) on using AFDM after a specific layer in PHOCNet for Query by String.

Layers conv3 1 conv3 2 conv4 1 conv4 2 conv5 1 conv5 1

A-TPS 17.98 17.41 17.19 17.25 20.32 20.41

A-Affine 22.01 20.11 19.97 20.01 19.99 20.21

Table 3: Word Error Rate(WER) on using AFDM after a

specific layer in CRNN (unconstrained).

data augmentation techniques mentioned in [29] and [40] on

the handwritten word images to increase the total number of

word samples (∼ 500K) in the training set.

• B2: Here we use transfer learning strategy to alleviate

the problem of data insufficiency in low resource scripts.

We train both HWR and HWS model using a large amount

of data present in Latin scripts, thereafter we fix the weights

till conv5 2 (conv4 2) layer of the CRNN (PHOCNet) net-

work and we fine-tune rest of the layers over the available

annotated data from Indic scripts.

• B3: This is identical to our adversarial learning based

framework, except that it deforms data in the image-space

using the TPS mechanism (Section 4.2). The input to the

AFDM is the original training image.

• B4: Here, we use affine transformation [17] in place of

TPS, using a fewer number of parameters (six) to devise

warping policies with relatively less degree of freedom for

Figure 3: We show visualization with three examples (column-

wise): the original image (a) and the first channel of the undis-

torted feature map (b) as well as the distorted feature map (c).

deformation.

5.4. Performance on HWR and HWS

In our experiments, we use Character Error Rate (CER)

and Word Error Rate (WER) as metrics [4] for HWR, while

mean Average Precision (mAP) metric [40] is considered

for HWS. In case of lexicon based recognition for IAM

dataset, we use all the unique words present in the dataset,

whereas we use lexicon provided in ICDAR 2011 competi-

tion for RIMES dataset and the lexicons provided with the

original dataset are used for IndBAN and IndDEV datasets.

From Table 1, it is to be noted that our adversarial fea-

ture augmentation method using TPS significantly outper-

forms B1 which uses different image level data augmen-

tation techniques as seen in [29, 31] together. This signi-

fies that only image level “handcrafted” data augmentation

cannot improve the performance significantly even if we

increase the the number of data-samples through possible

transformations. We notice that weight initialization from

pretrained weights in B2 helps to increase the performance

for both HWR and HWS to a reasonable extent and also

speeds up the training procedure significantly. Both B3 and

B4 are adversarial frameworks. From the results on both

HWR and HWS, it can be concluded that adversarial data

augmentation works better while introduced in the interme-

diate layers of the convolutional network rather than adver-

sarial deformation in image space as done in B3. Also, TPS

performs better than simple affine transformation in B4 due

to greater degree of flexibility in deformation.

Overall, the improvement due to adversarial data aug-

mentation is clearly higher for both IndBAN and IndDEV.

Also, performance is better in IndBAN and IndDEV dataset

than other two datasets inspite of our claim of having more

complexity in Bangla and Devanagari script. The major rea-
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son behind this is that IndBAN and IndDEV datasets have

multiple copies of same words by same author in both train-

ing and testing sets as well as simpler words (having 4 char-

acters on average), while the IAM dataset has more com-

plex samples in testing sets. Word retrieval in real-world

scenarios of Bangla and Devanagari script is far more com-

plex than what it is in unseen testing set. Moreover, due

to limited training data as well as a large number of char-

acter classes [3, 30], image level data augmentation cannot

generalize the model well in testing set, giving poor perfor-

mance for both HWR and HWS. In contrast, the proposed

method using adversarial learning helps in significant per-

formance gain compared to image level data augmentation.

We have also compared the recent state-of-the-art methods

[33, 42, 23, 32] with ours. Note that it is a meta framework;

the AFDM module can be incorporated in [33, 42, 23, 32]

too. Overall, our results are competitive with recent frame-

works on popular datasets like IAM and RIMES and show

reasonable improvement on low resource scripts (e.g. In-

dicBAN and IndicDEV).

5.5. Ablation Study

We have comprehensively studied the improvements

achieved from different augmentation techniques at various

training data sizes on the IAM dataset. We experiment over

8 instances with our training set size ranging from 10K to

80K, using the standard testing set for evaluation. From Fig-

ure 2, it is evident that the proposed method performs well

in the low-data regime, producing a reasonable improve-

ment over image-level augmentation. It is to be noted that

with increasing training data, the improvement gained by

our model over other baselines (which do not use adver-

sarial augmentation) gets reduced. We also evaluated the

performance by including the AFDM at different positions

of the ConvNet feature extraction units in PHOCNet and

CRNN (shown in Table 2 and 3). We observe that if the

AFDM is inserted between shallower layers, the model di-

verges and we do not achieve a desirable result. Better per-

formance along with improved stability in training is ob-

served in the mid-to-deeper parts of the task network which

encode a higher-level understanding of the extracted fea-

ture information. The performance again drops at very deep

layers. We also evaluate the performance of the model by

partitioning the original feature map into 1, 2, 4, 8 and 16

sub-maps using rest of the standard setup. It was noticed

that 4 divisions provide the optimum result (Figure 2).

Adversarial vs. Non-adversarial Learning: In contrast

to AFDM that is based on STN [17] and trained using ad-

versarial objective, an alternative (non-adversarial) could

be the work by Shi et al. [32] where STN is used to rectify

the spatial orientation of a word-image to make recognition

easier for Sequence Recognition Network [32] according

to the original philosophy of [17]. Following [32], we in-

troduce an STN module with TPS before the CRNN and

PHOCNet architecture and train the complete architecture

(STN + Task Network) in an end-to-end manner with the

task loss objective (Equation 10), keeping rest of the stan-

dard experimental setup of the task network same. The un-

constrained WER for non-adversarial pipeline using STN

is 20.07% and the mAP value for QbS is 85.64%, trail-

ing behind the proposed adversarial framework by 3.51%

(WER) and 3.05% (mAP) respectively. Next, we divide

the IAM dataset into hard and easy word samples using

the framework of Mor et al. [25] with CRNN as baseline

recognizer. We consider top 70% word images as easy

samples and 30% as hard samples based on the confidence

score. High score signifies easily recognizable images with-

out much deformation, while images with lower scores con-

tain ample deformation in them. We train both the adversar-

ial and non-adversarial pipeline using these easy samples

and test on hard samples. This experimental setup chal-

lenges the models to learn invariance that can generalize for

hard unseen word samples which are absent during training.

It is observed that while non-adversarial pipeline provides

40.22% unconstrained WER (71.31 mAP-QbS), our adver-

sarial framework achieves 27.64% WER (82.67 mAP-QbS)

outperforming the non-adversarial alternatives by a large

margin of 12.58% WER (11.36 mAP-QbS). Although the

objective of both of these pipelines is to learn a robust model

invariant to different types of deformation in handwritten

data, the non-adversarial method tries to learn the invari-

ance only from available training data while failing to gen-

eralize on unseen irregularities and deformations. Due to

free-flow nature of handwriting, it is not possible to include

every possible variation in the training dataset. Hence, our

adversarial framework proves useful to learn a robust model

that can generalize well on unseen deformations which are

absent in sparse datasets.

6. Conclusion

We study a common difficulty often faced by researchers

exploring handwriting recognition in low-resource scripts

and try to overcome the limitations of generic data aug-

mentation strategies. The AFDM can be flexibly added to

frameworks for both word-spotting and recognition, allow-

ing deep networks to generalize well even in low-data set-

tings. Rather than augmenting handwritten data in image

space using “handcrafted” techniques, adversarially warp-

ing the intermediate feature-space using TPS is a scalable

solution to overcome the dearth of variations seen in some

sparse training datasets. The higher degree of flexibility

incorporated by TPS with the adversarial parameterisation

strategy goes a long way to incorporate rare unseen vari-

ations, beating deformation policies that frameworks can

easily overfit to.
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Srebro. Mini-batch primal and dual methods for svms. In

ICML (3), pages 1022–1030, 2013. 1

[44] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In CVPR, vol-

ume 1, page 4, 2017. 2

[45] Paul Voigtlaender, Patrick Doetsch, and Hermann Ney.

Handwriting recognition with large multidimensional long

short-term memory recurrent neural networks. In ICFHR,

pages 228–233, 2016. 2

[46] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In ICCV, pages 2794–

2802, 2015. 2

[47] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta.

A-fast-rcnn: Hard positive generation via adversary for ob-

ject detection. In CVPR, 2017. 2

[48] Tomas Wilkinson and Anders Brun. Semantic and verbatim

word spotting using deep neural networks. In ICFHR, pages

307–312, 2016. 2

[49] Tomas Wilkinson, ICCVJonas Lindström, and Anders Brun.

Neural ctrl-f: segmentation-free query-by-string word spot-

ting in handwritten manuscript collections. In ICCV, pages

4443–4452, 2017. 2

[50] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-

Johnson, and Minh N Do. Semantic image inpainting

with perceptual and contextual losses. arxiv preprint. arXiv

preprint arXiv:1607.07539, 2, 2016. 2

[51] Zhuoyao Zhong, Lianwen Jin, and Zecheng Xie. High per-

formance offline handwritten chinese character recognition

using googlenet and directional feature maps. In ICDAR,

pages 846–850, 2015. 1

[52] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networkss. In ICCV, 2017. 2

4776


